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Abstract

We develop volatility risk premium (VRP) timing strategies that involve
trading two assets: a volatility asset and a risk-free asset. We first analyze a
benchmark portfolio with a constant negative weight on volatility assets each
month. Then, we show that a volatility-managed portfolio, which reduces sell-
ing of volatility assets during periods of heightened volatility, considerably
enhances long-run performance. Our findings are robust across three types of
volatility assets - variance swaps, VIX futures, and S&P 500 straddles - and in
the presence of transaction costs. An ex-post study indicates that timing portfo-
lios yield positive alpha and reduce exposure relative to constant-weight port-
folios, mostly during volatility-spike periods rather than stable periods. Our
findings help differentiate asset pricing theories on risk-return relations in the
volatility asset market.
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1 Introduction

It’s well known that sellers of volatility assets earn positive premiums (see e.g., Carr and

Madan (1998), Coval and Shumway (2001), Bakshi and Kapadia (2003), Ang, Hodrick,

Xing, and Zhang (2006), Carr and Wu (2009), Bollerslev and Todorov (2011), Kelly, Pástor,

and Veronesi (2016)). We in this paper ask the following questions: How do long-run

investors harvest volatility risk premiums (VRP)? Is there a simple, efficient way for long-

run investors to time VRP?

To answer these questions, we consider portfolios similar to Moreira and Muir (2017)

and make a modification by replacing the stock market index with one of three volatility

assets: a one-month variance swap contract, a one-month constant-maturity VIX futures

portfolio, and a one-month constant-maturity S&P 500 ATM straddle portfolio. For each

asset, we adhere to the longest period of available price data: 1990-2023 for variance

swaps, 2004-2023 for VIX futures, and 1996-2022 for straddles. We source our data from

standard resources such as CBOE and OptionMetrics. Each month t, a portfolio weight of

wi
t = −cft, (1.1)

is assigned to the volatility asset, and the remaining capital is allocated to risk-free as-

sets. Here, c represents a positive scaling constant that is chosen to match the portfolio’s

unconditional return standard deviation with that of the S&P 500 index. The term ft rep-

resents a timing factor that is expected to demonstrate a positive relationship with the

conditional one-month VRP. In other words, we sell more (less) volatility assets when

conditional VRP is higher (lower).

Our benchmark portfolio puts a constant weight on the variance asset each month,

i.e., ft = const. We discover that by setting the constant weight close to -7% for variance

swaps, -22% for VIX futures, and -12% for straddles, our portfolio achieves a similar level
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of return standard deviation as the S&P 500 index. Although the benchmark portfolio

returns exhibit larger negative skewness, kurtosis, and maximum drawdowns than S&P

500, these statistics remain at reasonable and acceptable levels. The benchmark portfo-

lios exhibit significantly better long-run performance relative to S&P 500, as indicated by

higher Sharpe ratios, excess returns, and factor-model alphas.

Next, we show that the benchmark portfolio’s performance can be significantly en-

hanced by carefully selecting ft. In the same spirit of Moreira and Muir (2017), we set

the weight proportional to the inverse of stock market volatility. Specifically, we consider

three commonly used volatility measures in the literature: realized volatility (RV), option-

implied volatility (VIX), and a GARCH(1,1) conditional one-month volatility forecast:

ft = 1/RVt,

ft = 1/V IXt,

ft = 1/GARCH(1, 1)t.

(1.2)

The choice of setting the weight equal to the inverse of volatility is motivated by recent

literature (Bekaert and Hoerova (2014), Cheng (2019), Cheng (2020), Aït-Sahalia, Kara-

man, and Mancini (2020), Lochstoer and Muir (2022), Yang (2022)), which emphasizes

that in the data an increase in market volatility is typically associated with a statistically

significant decrease in the conditional one-month VRP. Cheng (2019) specifically refers

to this negative relation as a "low-premium response puzzle" as established asset pric-

ing theories with time-varying volatility, volatility-of-volatility, disaster risk, and jumps

(Bollerslev, Tauchen, and Zhou (2009), Drechsler and Yaron (2011), Wachter (2013), Dew-

Becker, Giglio, Le, and Rodriguez (2017)) all predict a positive relation.

We first use OLS predictive regressions to confirm that this negative relation robustly

exists both in-sample and out-of-sample during the longest periods 1990-2023. We then

follow Moreira and Muir (2017) to use the monthly time-series of three volatility measures

2

Electronic copy available at: https://ssrn.com/abstract=4761614



to sort the following month’s variance swap returns into five portfolios. We confirm that,

as we move from the "lowest volatility" portfolio to "highest volatility" portfolio, overall,

average variance swap returns tend to weaken, standard deviation tends to rise, and

Sharpe ratio tends to fall in magnitude.

We find that all three volatility-managed portfolios defined above improve perfor-

mance. Specifically, for variance swaps, we find that our timing portfolio, when com-

pared to constant-weight portfolios, enhances the Sharpe ratio from 1.54 to a maximum

of 1.76. Additionally, we observe an increase in excess return and Carhart (1997) 4-factor

alpha, as well as a reduction in negative skewness, kurtosis, and maximum drawdowns.

While our findings are based on using VIX-squared as an approximation for variance

swap prices (see, e.g., Carr and Madan (1998)), we demonstrate the robustness of our

findings by utilizing actual quoted OTC variance swap price data obtained from Dew-

Becker, Giglio, Le, and Rodriguez (2017). Furthermore, we show that our findings are not

driven by specific historical periods, as the improved performance holds true even when

considering the recent 15-year period.

For VIX futures, we consistently find that our timing portfolio, compared to constant-

weight portfolios, leads to an improvement in the Sharpe ratio from 0.61 to a maximum

of 0.78. Furthermore, we observe an increase in excess return and Carhart (1997) 4-factor

alpha, as well as a reduction in negative skewness, kurtosis, and maximum drawdowns.

In our previous consideration of variance swaps and VIX futures, we made the sim-

plifying assumption that there is no transation cost such as bid-ask spreads and margin

requirements. First, we show that introducing bid-ask spreads may reduce the perfor-

mance of volatility-managed portfolios and constant-weight portfolios, but is unlikely to

affect the relative performance between the two. Second, given that investors have access

to the short VIX futures ETFs, the lack of margin requirements is not unreasonable. In

the case of straddles, we account for margin requirements. Specifically, we assume that
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the margin requirement for short selling an S&P 500 ATM straddle is equal to 100% of the

selling proceeds plus 20% of the current S&P 500 level, as in Johnson (2017).

The inclusion of margin requirements typically results in a reduction in the magni-

tude of returns and Sharpe ratios. Despite this fact, we consistently find that our timing

portfolios, compared to constant-weight portfolios, improve the Sharpe ratio from 0.51 to

a maximum of 0.62. Additionally, we observe an increase in excess return and Carhart

(1997) 4-factor alpha, as well as a drop in negative skewness, kurtosis, and maximum

drawdowns.

Our volatility-managed portfolios work under a similar logic as that in Moreira and

Muir (2017). In their study, the volatility managed portfolios yield significant improve-

ments relative to market buy-and-hold, primarily driven by the observed tendency for

the one-month equity premium to decline following periods of increased volatility dur-

ing economic downturns. Their strategy reduces the weight on the market index in such

times, helping to mitigate further losses or expedite the recovery of values from economic

downturns. As a result, the drawdowns experienced during recessions become smaller.

Our analysis replaces equity premium with variance risk premium, and the stock market

index with volatility assets.

So far, our timing portfolios have been volatility-managed. This approach offers sev-

eral advantages. Firstly, it is straightforward to implement. Secondly, it is independent of

specific econometric models and avoids potential model misspecification. Johnson (2017)

and Cheng (2019), among others, also find that their respective timing strategies, based

on ex-ante VRP measures, can improve performance relative to S&P 500 or unconditional

constant-weight volatility portfolios. To differentiate our approach from existing liter-

ature, we consider a fourth strategy that uses a VAR model of (RVt, V IXt) to estimate

ex-ante one-month VRP and then sets weight proportional to it:

ft = V RPt ≡ 1− Et[RVt+1]

V IXt

. (1.3)
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We do find that such econometrics-based VRP measures typically help improve port-

folio performance. However, this strategy also exhibits two disadvantages. Firstly, it

typically underperforms compared to timing portfolios based on volatility measures, es-

pecially the GARCH volatility forecasts, which consistently prove to be a robust timing

factor relative to others. Secondly, it shows less robustness across different historical peri-

ods and volatility assets.

Last but not least, we examine which market conditions have contributed the most

to the performance improvements in our timing portfolios. To this end, we partition our

data into two regimes: a high-volatility regime and a low-volatility regime. We classify

a month t as belonging to the high-volatility (low-volatility) regime if realized volatility

(RVt) exceeds (falls below) the 80th percentile of its unconditional distribution, approxi-

mately 20. Within each regime, we run various timing portfolio excess returns onto con-

temporanous constant-weight portfolio excess returns.

Our exercise is similar to Moreira and Muir (2017) which decompose portfolio perfor-

mance into expansions and recessions, and find that volatility-managed portfolios reduce

exposure to MKT more greatly in recessions. Our choice of low versus high-volatility

regimes is motivated by Yang (2022) which shows that the negative volatility-VRP rela-

tion puzzle is predominantly observed in high-volatility periods, not necessarily reces-

sions. We find that various timing portfolios produce positive alpha and help reduce

beta/exposure only during high-volatility regimes, rather than in low-volatility regimes.

We further provide detailed regime-conditional predictability evidence in the Appendix.

We find that, aligning with the view in Yang (2022), only "persistent" or "structural" volatil-

ity spikes predict negative realized VRPs in the next month, while transient volatility

jumps and small volatility shocks in stable periods both predict positive VRPs. Our find-

ings thus help differentiate theories on the puzzling negative risk-return relations in the

volatility asset market. Cheng (2019) suggests the puzzle is possibly driven by changes
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in hedging demand induced by microstructure frictions or government’s implicit guaran-

tees. Lochstoer and Muir (2022) explain the puzzle with extrapolative volatility expecta-

tions. Yang (2022) attributes the puzzle to investors’ slow learning about structural breaks.

Our findings seem to support the channel of Yang (2022).

However, we note that the above analysis is conducted in an ex-post context. In an

ex-post examination of portfolio performance, we find that the enhancement is driven by

periods of persistent large volatility spikes. But there does not necessarily exist an easy

way to leverage this pattern to enhance ex-ante timing strategy performance, due to two

fundamental challenges.

Firstly, ex-ante, it is difficult to predict the arrival of a large volatility spike, which

results in large negative realized VRPs. During low-volatility periods, where volatility

and VRP exhibit small movement, these large negative realized VRPs stand out as outliers

that can swiftly attenuate away the positive relations between volatility and next-month

realized VRPs (that should have been seen). In fact, this is the main reason why we

did not observe an increasing pattern of VRPs with volatility levels across the first several

portfolios when following Moreira and Muir (2017) to sort portfolios based on the current

month’s volatility levels. Indeed, this unpredictability is also precisely the reason why

selling volatility on average earns positive premiums.

Secondly, even if a volatility spike has occurred, it is hard to determine upfront whether

the spike observed in the current month is a transient jump that will revert in the next

month (resulting in a positive realized VRP) or a persistent structural break that will en-

dure for an extended period (resulting in a negative realized VRP). This distinction can

only be made ex-post. Therefore, in practice, we prefer to adopt simpler timing strategies.

Literature. Our research is related to three literatures. First, it is related to the factor

timing literature (Moreira and Muir (2017), Cederburg, ODoherty, Wang, and Yan (2020),

Barroso and Detzel (2021), Haddad, Kozak, and Santosh (2020)). A difference is that we
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time variance risk premiums rather than premiums such as equity and value premiums,

etc. Another important difference is that Moreira and Muir (2017)’s volatility managed

portfolio works when the timing factor is realized volatility, which negatively predicts

next-month returns. Recent work by Martin (2017) shows that implied volatility instead

tends to positively predict next-month returns. In contrast, the volatility-VRP relation

is negative regardless of how to measure volatility, and thus our timing portfolios work

more or less equally well whether the timing factor is realized, implied, or conditional

volatility.

Other papers that consider VRP timing strategies include, for instance, Dörries, Korn,

and Power (2024), Egloff, Leippold, and Wu (2010), Johnson (2017) and Cheng (2019).

Our research differs in several aspects. Firstly, we are the first to consider all three types of

variance assets. Secondly, we are the first to study (model-free) volatility-managed, rather

than VRP-managed, portfolios. Lastly, we show our timing portfolios are robust in both

older and recent subsamples. We also show our timing portfolios improve performance

primarily in volatility-spike periods. These two findings are not inconsistent with each

other. As both older and recent subsamples contain volatility spikes, they both generate

performance improvement.

Second, our research relates to a literature that studies intertemporal risk-return rela-

tions in volatility asset markets (Bekaert and Hoerova (2014), Cheng (2019), Cheng (2020),

Aït-Sahalia, Karaman, and Mancini (2020), Lochstoer and Muir (2022), Yang (2022)). This

literature has recently emphasized a puzzling negative volatility-VRP relation, inconsis-

tent with leading asset pricing theories. Our timing strategies precisely exploit this puz-

zle, and our ex-post regime-conditional performance analysis helps differentiate compet-

ing theories on the puzzle.

Third, our research is related to the large volatility risk premium literature. Among

others, Dew-Becker, Giglio, Le, and Rodriguez (2017) study variance swaps; Eraker and
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Wu (2017) and Cheng (2019) study VIX futures; Carr and Madan (1998), Coval and Shumway

(2001), Carr and Wu (2009), Eraker (2021), and Eraker and Yang (2022) study S&P 500

straddles and options; Johnson (2017) and Lochstoer and Muir (2022) study all three as-

sets. Ang, Hodrick, Xing, and Zhang (2006) and Bansal, Kiku, Shaliastovich, and Yaron

(2014) estimate VRP in the cross-section of stock returns. Our constant-weight portfolio

by construction has the same Sharpe ratio as the original volatility asset returns. We find

numbers consistent with those reported in the papers that originally study each particular

asset, lending credibility to our results.

2 Timing Strategy

2.1 Equity Premium Timing

To time equity premium, Moreira and Muir (2017) use a strategy consisting of two assets:

the market index and a risk-free asset. Each month t, the weight in the market is

wmkt
t =

c

RVt

, (2.1)

where c is a scaling positive constant whose value is set such that the portfolio has the

same unconditional return variance as the market index. RVt is market return realized

variance. Note that portfolio excess return (relative to risk-free rate) is equal to

rt+1 − rft = wmkt
t rmkt

t+1 + (1− wmkt
t )rft − rft

= wmkt
t (rmkt

t+1 − rft )

=
c

RVt

(rmkt
t+1 − rft ).

(2.2)

Thus, portfolio Sharpe ratio E(rt+1 − rft )/std(rt+1 − rft ) is independent of the scaling con-

stant c. A researcher cannot manipulate the Sharpe ratio. The authors provide evidence

that this strategy generates a significant alpha and a higher Sharpe ratio compared to the
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market index. The rationale behind the strategy is that during periods of increased real-

ized volatility, particularly during economic downturns, monthly equity premiums tend

to decrease. Consequently, reducing the weight assigned to the market index enhances

the strategy’s performance.

2.2 Variance Risk Premium Timing

2.2.1 Motivating Evidence

Recent literature, such as Cheng (2019) and Lochstoer and Muir (2022), has emphasized

that an increase in market volatility typically also leads to a decrease in the conditional

one-month Volatility Risk Premium (VRP). Cheng (2019) specifically refers to this nega-

tive relation as a "low-premium response puzzle," as established asset pricing theories

with time-varying volatility, volatility-of-volatility, disaster risk, and jumps (Bollerslev,

Tauchen, and Zhou (2009), Drechsler and Yaron (2011), Wachter (2013), Dew-Becker, Giglio,

Le, and Rodriguez (2017)) all predict a positive relation.

In Table 1, we provide additional confirmation of the negative relationship between

volatility and VRP using OLS predictive regressions. To ensure robustness, we use the

longest available data sample and consider three different measures of market volatil-

ity: realized volatility (RV), implied volatility (VIX), and a GARCH(1,1) conditional one-

month volatility forecast. As shown, consistent with the literature, when volatility rises,

the next-month realized returns on a variance swap tend to be more positive, that is, real-

ized VRP falls.

Table 2 presents out-of-sample R-squared values obtained from OLS predictive regres-

sions, following Welch and Goyal (2008). As seen, all three volatility measures exhibit

a positive and significant OOS R-squared, indicating their ability to predict next-month

realized variance asset returns in a meaningful manner.
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Figures 1, 2, and 3 sort the time-series of variance swap returns (RVt+1

V IX2
t
−1) into five port-

folios respectively based on previous month’s realized volatility (RVt), implied volatility

(V IXt), and GARCH(1,1)’s one-month volatility forecast (GARCH(1, 1)t). These exercises

are similar to Moreira and Muir (2017) Figure 1. As seen, the message is consistent across

different volatility measures. First, average variance swap returns tend to weaken as we

move from the "lowest volatility" portfolio to "highest volatility" portfolio, confirming

an overall negative volatility-VRP relationship. Second, standard deviation tends to rise.

Third, as a result, Sharpe ratio tends to fall in size. Lastly, the probability of a recession

monotonically increases.

The above evidence all suggests that when volatility increases, VRP tends to fall.

Equivalently speaking, volatility assets tend to be priced "too cheap" and thus exhibit

more positive returns going forward. If follows that there might exist a potential oppor-

tunity for timing VRP by reducing negative exposure on volatility assets at such times.

In this paper, we consider three variance assets. In our benchmark analysis, we use a

one-month variance swap contract. This allows us to consider the longest data sample

1990-2023. Later on, we extend our analysis to include VIX futures and S&P 500 straddles

as alternative variance assets. Note that the specific trading rule for each variance asset is

different and can impact portfolio returns. We start by defining our timing strategies.

2.2.2 Timing Portfolio Definitions

Similar to Moreira and Muir (2017), our strategy consists of two assets: a variance asset

and a risk-free asset. In all three cases (variance swap, VIX futures, or straddle), we

determine the weight in the variance asset, denoted as wi
t, at the end of each month t.

Specifically, we set it as

wi
t = −cft, (2.3)

10

Electronic copy available at: https://ssrn.com/abstract=4761614



where c is a positive scaling constant chosen in such a way that the portfolio has the same

unconditional return variance as the stock market index. The variable ft represents a

timing factor that ideally demonstrates a positive relationship with conditional V RPt =

1 − Et[RVt+1]

V IX2
t

, which signifies the relative expensiveness of variance assets. Thus, we sell

more (less) variance assets in month t if V RPt is higher (lower).

Consider first the case of variance swaps. When initiating a long position in a one-

month variance swap contract in month t, we are obligated to pay a fixed leg in exchange

for realized variance RVt+1 in month t + 1. Carr and Madan (1998) show that the fixed

leg can be approximated by V IX2
t . Let Wt denote our initial capital at the end of month t.

Our portfolio return realized in month t+1, in excess of the risk-free rate, is equal to

rt+1 − rft =
Wtw

vs
t

RVt+1−V IX2
t

V IX2
t

+Wt(1 + rft )

Wt

− 1− rft

= wvs
t

(RVt+1

V IX2
t

− 1
)

= wvs
t rvst+1

= −cftr
vs
t+1.

(2.4)

The numerator in the first line represents our month t+1 gross payoff. The first term

represents the payoff from our positions in variance swaps, with a notional value equal

to a fraction wvs
t of our capital Wt. A negative (positive) value of wvs

t implies that we have

short (long) positions. The second term means that our entire capital Wt can be allocated

to the risk-free rate since variance swap positions do not require any upfront payment to

initiate. The third equality follows from a definition of monthly variance swap return in

terms of notional values:

rvst+1 ≡
RVt+1

V IX2
t

− 1. (2.5)

Consider then the case of VIX futures. In futures trading, the margin requirements

tend to be relatively small, so for the purpose of this analysis, we will ignore the margin

11

Electronic copy available at: https://ssrn.com/abstract=4761614



requirements. In this case, our portfolio return realized in month t+1, in excess of the

risk-free rate, is equal to

rt+1 − rft =
Wtw

vix
t

P vix
t+1

P vix
t

+Wt(1− wvix
t )(1 + rft )

Wt

− 1− rft

= wvix
t (1 + rvixt+1) + (1− wvix

t )(1 + rft )− 1− rft

= wvix
t (rvixt+1 − rft )

= −cft(r
vix
t+1 − rft ).

(2.6)

The numerator in the first line still represents our month t+1 gross payoff. The first and

second terms respectively indicate that we divide the total wealth Wt into VIX futures and

risk-free assets according to the weight (wvix
t , 1−wvix

t ). Note that the last term in equation

(2.6) is slightly larger than the last term of equation (2.4) given the same variance asset

return. The difference reflects the fact that when we short sell VIX futures, our margin

account immediately receives cash inflows that can be allocated to risk-free assets. Note

that the second line follows from a definition of monthly VIX futures return:

rvixt+1 ≡
P vix
t+1

P vix
t

− 1, (2.7)

where P vix
t represents the value of a one-month constant-maturity VIX futures portfolio

or ETF.

Consider then the case of straddles. In options trading, particularly options short

selling, margin requirements are typically substantial and cannot be ignored. The mar-

gin requirement for options short selling is usually equal to 100% of the proceeds from

short selling, plus a portion that is proportional to the level of the underlying asset price

adjusted by the option’s moneyness. In Johnson (2017), a margin requirement equal to

the short selling proceeds plus 20% of the current S&P 500 level is assumed when short

selling an at-the-money (ATM) SPX straddle.

In this case, our portfolio return realized in month t+1, in excess of the risk-free rate,
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is equal to (for negative weight wst
t )

rt+1 − rft =
Wtw

st
t

P st
t+1

20%×SPXt
−Wtw

st
t

P st
t

20%×SPXt
(1 + rft ) +Wt(1 + rft )

Wt

− 1− rft

= wst
t

(
− rst,shortt+1 − P st

t

20%× SPXt

rft

)
= −cft

(
− rst,shortt+1 − P st

t

20%× SPXt

rft

)
,

(2.8)

which has a similar form as the last terms of equations (2.4) and (2.6), given the same

variance asset return, apart from the risk-free rate term. The numerator in the first line still

presents our month t+1 gross payoff. The first term indicates that we short sell straddles

with a total margin requirement that is equal to a fraction wst
t of our capital Wt. When wst

t

is negative, the first term is negative, representing the payment to close short positions.

The second term is positive, representing the additional interest earned on short selling

proceeds. The third term represents interest earned on our capital Wt, which entirely can

be allocated to the risk-free rate, noting that even the capital maintained as margin earns

interest.

The key difference between equation (2.8) and equations (2.4) and (2.6) is the redefi-

nition of short returns. In the second line, we’ve followed Johnson (2017) to define the

monthly short straddle return as

rst,short ≡
P st
t − P st

t+1

20%× SPXt

, (2.9)

which explicitly incorporates margin requirements into the calculation and represents a

return from a short-seller’s perspective. Here, P st
t represents the value of a one-month

constant-maturity S&P 500 ATM straddle portfolio.
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3 Portfolio Performance: Variance Swaps

3.1 Longest OOS Periods: Jan 1992 - Nov 2023

We now examine the empirical performance of the above defined portfolios. We start

with variance swaps as the variance asset, which allows us to have a relatively long data

sample back to 1990. Table 3 provides a summary of the various ft we consider and their

respective performance.

It is important to define a benchmark portfolio. In our benchmark portfolio, we main-

tain a constant weight on variance swaps each month, ft = const. Dew-Becker, Giglio, Le,

and Rodriguez (2017) show that one-month variance swaps exhibit significantly higher re-

turn volatility compared to S&P 500. In our sample, the return volatility is approximately

66% per annum. Consequently, in order for the constant-weight portfolio to match the

return variance of S&P 500, the weight assigned to the variance swap should be relatively

small, close to -0.066 in our sample.

Consistent with Dew-Becker, Giglio, Le, and Rodriguez (2017), we find that the mean

return on variance swaps in our sample is -31% monthly. With an exposure of -0.066,

the resulting mean portfolio return is roughly −0.066 × −31% = 2% monthly, or 24% an-

nualized. As seen in Table 3, the benchmark constant-weight portfolio already delivers

a substantial mean excess return (24% annually) and Sharpe ratio (1.54 annually). Al-

though the portfolio returns exhibit larger negative skewness, kurtosis, and maximum

drawdowns compared to the S&P 500, these statistics remain at reasonable and accept-

able levels. In the long run, the constant-weight portfolio significantly outperforms S&P

500 (see Figure 5). Since in recent decades, S&P 500 outperforms Fama and French (2015)

5 factors and momentum, it follows that the constant-weight portfolio also outperforms

Fama-French 5 factors and momentum (not reported).

We also regress portfolio returns onto Carhart (1997) 4 factors. The MKT beta is 0.57,
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which is less than 1. This implies that the strategy enhances returns while simultaneously

reducing risk exposure to the stock market. Further, portfolio returns are also correlated

with SMB and MOM.

To further enhance portfolio performance, we consider four different ft. The first three

strategies are not directly based on VRP, but rather based on different volatility measures.

These measures include realized volatility, implied volatility, and a GARCH one-month

volatility forecast. The analysis in the last section suggets that our exposure on variance

swaps should decrease in volatility. Thus, we respectively set

ft = 1/RVt,

ft = 1/V IXt,

ft = 1/GARCH(1, 1)t.

(3.1)

As shown, all of the three timing portfolios exhibit improved performance compared to

the constant-weight portfolio. Specifically, the Sharpe ratio can be enhanced from 1.54 to

a maximum of 1.76. The negative skewness, kurtosis, and maximum drawdowns all fall.

The improved performance can be naturally attributed to two possibilities.

The first possibility is purely mechanical. When there is higher (expected) volatil-

ity, the expected payoff of variance swaps increases. By reducing negative exposure to

variance swaps during such periods, performance is improved. However, this mechan-

ical reason alone is obviously insufficient for two key reasons. Firstly, the results hold

even when using VIX as the timing factor, which is directly linked to the price, rather

than the expected payoff, of variance swaps. If the mechanical reason were the main

driver, we would expect to observe opposite results for VIX-timed portfolios, but this is

not the case. Secondly, leading asset pricing models (such as Bollerslev, Tauchen, and

Zhou (2009), Drechsler and Yaron (2011), Wachter (2013), Dew-Becker, Giglio, Le, and

Rodriguez (2017)) all suggest that when volatility rises, the VRP should increase, with

variance asset prices rising more than expected payoffs. To boost performance, we would
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therefore need to increase our negative exposure to variance swaps, but instead, we ob-

serve the opposite effect.

The second reason is that, as shown in Cheng (2019), among others, when volatility

increases, VRP puzzlingly decreases: variance swap prices increase less than expected

payoffs. By reducing negative exposure to variance swaps during these periods, perfor-

mance is enhanced. Cheng (2019) shows that the negative volatility-VRP relation holds

no matter which volatility measure to use. This is precisely consistent with what we find:

the timing portfolios improve performance more or less equally no matter which volatil-

ity measure to use. We therefore believe that the second reason is the primary driver

of improved performance. As seen from Table 3, various timing strategies further help

reduce MKT beta, suggesting an even lower exposure to systematic market risk.

Johnson (2017) and Cheng (2019) develop VRP timing portfolios based on ex-ante VRP

measures. As a comparison, we also introduce a strategy that directly incorporates a VRP

measure as the timing factor. To estimate VRP, in each month, we estimate a VAR model

with two variables (RVt, V IXt) and five lags, utilizing all available historical realized and

implied volatility data. The inclusion of implied volatility (V IXt) as a model input is

motivated by our belief that it contains information about the expected future realized

volatility (Et[RVt+1]). We use volatility measures instead of variance measures as model

inputs, as we believe VAR-type models better capture the dynamics of volatility, which

can be more gradual compared to the sharp movements of variance. We find that this

VRP-based timing strategy also significantly improves performance. As a comparison,

we also report the performance of stock market buy-and-hold and equity premium timing

strategies of Moreira and Muir (2017).

Figure 4 plots each month’s portfolio weight on variance swaps for each strategy, wvs
t .

Mechanically, our timing strategies enhance performance due to a positive correlation be-

tween the month t weight wvs
t and the subsequent month’s realized variance swap return
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RVt+1

V IXt
− 1. By comparing the middle and bottom panels of the figure, we can observe a

certain degree of positive comovement between these two. Intuitively, when volatility

spikes in month t, we reduce our exposure to variance swaps (increase wvs
t ) immediately

in month t. Variance swap return realized in month t is already positive and large due to

the volatility spike. But since variance swap is typically underpriced in month t, when

next month t+1 arrives, payoff is typically higher than the price, resulting in another large

positive return, confirming the profitability of our strategy.

This predictive correlation is further directly confirmed by Table 4. Additionally, Table

5 presents the contemporaneous correlation between the weights adopted in different

strategies. As shown, there is a notable level of similarity among them. The strategy

based on VRP exhibits a relatively lower correlation with the strategies based on volatility

measures.

Figure 5 displays the cumulative portfolio value for each strategy, with all portfolios

starting with an initial value of $1 in January 1992. The ending value of each portfolio

in November 2023 is also provided. As we can see, the cumulative effect over this 30-

year period is huge, with the GARCH-timed portfolio, for instance, generating an almost

three-times ending value than the constant-weight portfolio.

Additionally, Figure 5 illustrates the drawdowns for each strategy. Moreira and Muir

(2017) demonstrate significant improvements relative to market buy-and-hold, primarily

due to the tendency of the equity premium to decline after a volatility spike occurs during

recessions. Their strategy sharply reduces the weight on the market index in such times,

helping to mitigate further losses or expedite the recovery of values from economic down-

turns. As a result, drawdowns become smaller in recessions. Our logic is similar. After

a volatility spike in recessions, VRP tends to decrease. Consequently, we significantly di-

minish the negative weight on variance swaps. This serves to prevent further losses or

expedite the recovery of values from economic downturns. As a result, drawdowns also
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become smaller in recessions. These patterns are evident from Figure 5 when examining

events such as the 2008 Global Financial Crisis.

3.1.1 Where is the improved performance exactly generated?

To better understand where the improved performance is exactly generated, we partition

our data into two regimes: a high-volatility regime and a low-volatility regime. We clas-

sify a month t as belonging to the high-volatility (low-volatility) regime if realized volatil-

ity (RVt) exceeds (falls below) the 80th percentile of its unconditional distribution, approx-

imately 20. Table 6 performs regression analyses conditional on low-volatility (RVt < 20)

and high-volatility (RVt > 20) regimes. Conditional on each regime, we regress timing

portfolio excess returns onto contemporanous constant-weight portfolio excess returns:

r
vs,ft−1

t − rft−1 = α + β(rvs,cwt − rft−1) + εt, (3.2)

for ft = {1/RVt, 1/IVt, 1/GARCH(1, 1)t}. We can see two patterns. First, the timing port-

folio’s alpha relative to constant-weight portfolio is mostly due to high-volatility regimes.

Second, the timing portfolio’s exposure to constant-weight portfolio is much lower in

high-volatility regimes. These two observations both suggest that our VRP timing port-

folios perform better in high-volatility times than in low-volatility times. Our exercise

is similar to Moreira and Muir (2017) which decompose portfolio performance into ex-

pansions and recessions, and find that volatility-managed portfolios reduce exposure to

MKT more greatly in recessions. Our choice of low versus high-volatility regimes is mo-

tivated by Yang (2022) which shows that the negative volatility-VRP relation puzzle is

predominantly observed in high-volatility periods, not necessarily recessions.

We further provide detailed regime-conditional predictability evidence in the Appendix.

We find that, aligning with the view in Yang (2022), only "persistent" or "structural" volatil-

ity spikes predict negative realized VRPs in the next month, while transient volatility

18

Electronic copy available at: https://ssrn.com/abstract=4761614



jumps (that quickly revert in the next month) and small volatility shocks in stable peri-

ods in general both predict positive VRPs. Our findings thus help differentiate theories

on the puzzling negative risk-return relations in the volatility asset market. Cheng (2019)

suggests the puzzle is possibly driven by changes in hedging demand induced by mi-

crostructure frictions or government’s implicit guarantees. Lochstoer and Muir (2022)

explain the puzzle with extrapolative volatility expectations. Yang (2022) attributes the

puzzle to investors’ slow learning about structural breaks. Our findings support the chan-

nel of Yang (2022).

Finally, we note that the above analysis in this section is conducted in an ex-post con-

text. In an ex-post examination of portfolio performance, we find that the enhancement

is driven by periods of large volatility spikes. While one might be tempted to think that

a regime-dependent timing strategy can be developed, ex-post findings do not automati-

cally suggest a straightforward method to enhance ex-ante timing strategies, due to sev-

eral fundamental challenges. We explain these challenges in the Appendix. Consequently,

in practice, we prefer to adopt simple timing strategies.

3.2 Shorter OOS Periods: Aug 2006 - Nov 2023

It appears from Figure 5 that the outperformance of different timing strategies compared

to the constant-weight portfolio is primarily driven by the first half of our sample period.

We conduct a robustness check by considering only the second half of our sample as out-

of-sample test periods. Table 7 provides a summary of the performance for each strategy,

while Figure 7 illustrates the cumulative portfolio value for each strategy. In this analysis,

all portfolios start with an initial value of $1 in August 2006, with the ending value of

each portfolio in November 2023 also displayed.

Remarkably, we find that timing strategies based on VIX, GARCH volatility forecast

and VRP estimated using the VAR model continue to significantly enhance performance
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compared to the constant-weight portfolio. From Figure 7, we can clearly see that during

both the 2008 Crisis and the COVID-19 Crisis, our timing portfolio helped contain losses

and accelerate value recovery relative to a fixed-weight portfolio.

Lastly, it is worth noting that the GARCH volatility forecast represents a particularly

robust and powerful timing factor for the VRP. Its superior ability to predict the VRP is

particularly strong during recent 15 to 10 years. This remarkable performance prompts

us to consider the underlying reasons behind its efficacy. One possibility could be the

changing dynamics of market volatility driven by breaks in macroeconomic factors, mar-

ket structure, or trading patterns. GARCH is better able to capture structural breaks,

which has rendered the relationship between volatility and VRP more favorable to the

GARCH-based forecasting approach.

3.3 Robustness: Using Actual Price Data

Up until now, we have utilized VIX-squared as an approximation for the price of a vari-

ance swap contract. However, recent literature, such as the work by Martin (2017), raises

concerns about the accuracy of this approximation, particularly when volatility exhibits

jump-like behaviors. To address this issue, we incorporate actual OTC quoted variance

swap price data provided by Dew-Becker, Giglio, Le, and Rodriguez (2017). This limits

our analysis to a relatively shorter period, from 1996 to 2013.

Firstly, we observe a high correlation of 98.7% between the realized return on a one-

month variance swap, when based on (i) VIX-squared and (ii) the actual price data. The

difference between the two is quite negligible. Secondly, when examining the out-of-

sample test results in this scenario, as presented in Table 8 and Figures 8 and 9, we con-

tinue to find that various timing strategies demonstrate improvements compared to the

constant-weight portfolio. For instance, Sharpe ratios can be enhanced from 1.26 to a

maximum of 1.66. All of the other statistics also improve.
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3.4 Transaction Costs

Up to this point, we have not factored in transaction costs in our analysis. It is impor-

tant to note that our portfolios are constructed by holding a one-month variance swap

contract to maturity each month. Given the low trading frequency, transaction costs asso-

ciated with frequent rebalancing are unlikely to have a substantial impact on our portfolio

performance.

Furthermore, even if transaction costs were substantial, they would likely have a sim-

ilar impact on both a constant-weight strategy and, say, a VIX-timed strategy. The key

distinction between the two strategies lies in the weighting scheme, with the former main-

taining constant weights while the latter adjusts the weights based on VIX each month.

But because the average weights are similar across the two strategies (for instance, Table

3 shows that average weights for all the strategies, including the constant-weight strategy,

are close to -7%), whether the transaction costs are fixed or proportional (such as bid-ask

spread), they would likely affect the two portfolios similarly. To see this, assume that, for

instance, the bid-ask spread implies that the shorting return on the original one-month

variance swaps is reduced by 1% per month, from 31% to 30%. Then, the return on the

constant-weight and VIX-timed portfolios will both reduce by 1% × 0.07 = 0.07% per

month or 0.07% × 12 = 0.84% per annum. The transaction cost, therefore, does not affect

the relative performance between these two portfolios.

Note a significant difference between the volatility asset timing in the current paper

and the stock market index timing in Moreira and Muir (2017). In Moreira and Muir

(2017), the stock market index is an asset that can be held for a long term. Thus, the more

frequently or drastically one adjusts the weight on the market index in the volatility-timed

portfolios, the worse the volatility-timed portfolio will perform relative to market buy-

and-hold. In contrast, volatility assets all have limited maturities.1 We need to rebalance

1Indeed, any asset with a stationary price process cannot have unlimited maturity. Otherwise, investors
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whether our portfolio has constant or time-varying weights. Thus, transaction costs are

unlikely to affect the relative performance between the two portfolios. This logic applies

to variance swaps, as well as VIX futures and S&P 500 straddles that we consider below.

Considering these facts, we can reasonably expect that transaction costs, whether sig-

nificant or not, are unlikely to sharply dampen the relative performance of our timing

strategies relative to the constant-weight benchmark. This relative performance is this pa-

per’s focus. In the next, we consider exchange-traded volatility assets and explicitly take

another form of transaction costs, the margin requirements, into account.

4 Portfolio Performance: VIX Futures and S&P 500 Straddles

We now consider using two exchange-traded assets, VIX futures and S&P 500 straddles,

as the volatility asset. An important transaction cost in exchange trading is the margin

requirement, which limits investors’ ability to take positions. For VIX futures, we do not

consider margin requirements for two reasons. First, margin requirements for futures

trading are typically small. Second, there exist ETFs such as SVIX which provides in-

vestors a fixed negative exposure to constant-maturity VIX futures at minimum fees. For

straddles, we explicitly consider margin requirements.

4.1 VIX Futures

Unlike our previous exercise with one-month variance swap contracts, VIX futures and

S&P 500 straddles do not have regular monthly maturities. To address this, the literature

typically constructs portfolios on a daily basis using a front-month contract and a back-

month contract, appropriately weighted to achieve an average maturity of one month.

We first obtain the daily returns provided by Johnson (2017) for the constant-maturity

can immediately create an arbitrage strategy by buying low (slightly below the unconditional average) and
selling high (slightly above the unconditional average) using limit orders.
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(synthetic) variance swap/VIX futures/S&P 500 ATM straddle positions with a target

maturity of one month, denoted as rm,m+1/21. We then roll over these strategies each

month to convert the daily returns into monthly returns rm,m+1:

1 + rm,m+1 =
21∏
j=1

(
1 + rm+ j−1

21
,m+ j

21

)
. (4.1)

Figure 10 illustrates the time series of monthly returns on the three constant-maturity

volatility investments. Table 9 displays the correlation between them. While these returns

exhibit strong positive correlations, they are not perfectly correlated. Notably, the average

negative returns are more pronounced for variance swaps compared to VIX futures and

straddles.

To assess the most recent periods, particularly the Covid Crisis periods, we supple-

ment the VIX futures and straddle returns obtained from Johnson (2017) with data pur-

chased from CBOE and OptionMetrics. This allows us to extend our sample to the most

recent time.

Table 10 presents a summary of our results for VIX futures. As shown, the constant-

weight portfolio generates a Sharpe ratio of 0.61, which by construction is equal to the

(negative) Sharpe ratio of the original VIX futures portfolios. Our findings therefore align

closely with those in Eraker and Wu (2017). In their study, they report an annualized

return of -40% and an annualized standard deviation of
√
252× 4% = 64% for one-month

constant-maturity VIX futures portfolios, implying a Sharpe ratio of -0.63. Our timing

portfolios, on the other hand, can enhance the Sharpe ratio to as high as 0.78. All the

other statistics also improve. The most notable improvement is in the Carhart (1997) 4-

factor alpha, from 3.1% (statistically insignificant) to 6.3% (statistically significant).

Plus, as shown in Table 11, we continue to find that the timing portfolios generate

positive alpha and reduce exposure relative to constant-weight portfolios mostly in high-

volatility regimes. In low-volatility regimes, the timing portfolios even increase rather
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than reduce exposure, evidence again consistent with "no low-premium response puzzle"

in low-volatility periods. In sum, ex-post, our timing strategies simply work significantly

better in high-volatility periods.

Figures 11 and 12 plot the portfolio weights and cumulative portfolio values, respec-

tively, for VIX futures-based portfolios. In this analysis, all portfolios start with an initial

value of $1 in April 2004, with the ending value of each portfolio in November 2023 also

displayed. Over this nearly 20-year period, the GARCH-timed portfolio, for instance,

generates nearly twice the value of the constant-weight portfolio. From Figure 12, we can

again clearly see that during both the 2008 Crisis and the COVID-19 Crisis, our timing

portfolio helped contain losses and accelerate value recovery relative to a fixed-weight

portfolio. This explains the smaller drawdowns.

Cheng (2019) implements a "Cash or Short" timing strategy, where all portfolio capital

is allocated to a short VIX futures contract (subject to margin constraints) each day if the

estimated ex-ante VRP (Q minus P) is positive, and to a cash account otherwise. The

portfolio is then scaled to having a similar unconditional return variance as S&P 500. He

uses a test period from 2004 to 2015, and reports a Sharpe ratio of 0.87, an excess return

of 16.6% (both annualized), and a maximum daily drawdown of -26.4%.

We replicate various timing strategies during the same period. Although our strategy

involves monthly rebalancing instead of daily rebalancing given that there are VIX fu-

tures ETFs directly available to investors, we find that the results are highly comparable.

For the VAR strategy, we observe a Sharpe ratio of 0.98, an excess return of 15% (both

annualized), and a maximum monthly drawdown of -25.4%.

Interestingly, as shown in Figure 12, the VAR-VRP timing strategy shows poorer per-

formance during the more recent 2016-2023 period. In contrast, the simpler timing strat-

egy based on volatility measures, such as GARCH forecasts, performs markedly better

in recent periods. This observation suggests that the simplicity of our volatility-based

24

Electronic copy available at: https://ssrn.com/abstract=4761614



timing strategy may confer advantages in terms of effectiveness and robustness.

4.2 S&P 500 ATM Straddles

Table 12 presents a summary of our findings based on S&P 500 straddles. The constant-

weight portfolio generates a Sharpe ratio of 0.51. Note that this Sharpe ratio may appear

relatively small because it incorporates the influence of margin constraints. Our findings

align with previous studies by Carr and Madan (1998), Coval and Shumway (2001), Er-

aker (2021), and Eraker and Yang (2022), which all suggest that a reasonable range for the

Sharpe ratio of S&P 500 near-ATM straddles is between -0.4 and -1.

As shown in the table, our timing portfolios have the ability to improve the Sharpe ra-

tio from 0.51 to a maximum of 0.62. Although the improvement may be relatively smaller

compared to the VIX futures case, it highlights the robustness of our timing portfolios,

even after accounting for margin constraints.

Plus, Table 13 again shows that the timing portfolios generate positive alpha and re-

duce exposure relative to constant-weight portfolios mostly in high-volatility regimes. In

low-volatility regimes, the timing portfolios even increase rather than reduce exposure,

evidence consistent with "no low-premium response puzzle" in low-volatility periods.

In Table 12, we report two average portfolio weights. First, the weight wt defined

in equation (2.8), which measures the fraction of month-t total capital that is deposited

as margin. Because the margin requirement is usually higher than the market value of

the straddles we can trade, wt does not measure our portfolio’s real exposure to percent

price movement in straddles. Second, the modified weight wtP st
t

20%×SPXt
measures the true

exposure. As seen, the true exposure is much smaller, on average from -0.12 to -0.14.

Figure 13 plots the time series of the two portfolio weights for various strategies.

Figure 14 plots cumulative portfolio values for various strategies. In this analysis,

all portfolios start with an initial value of $1 in Jan 1996, with the ending value of each
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portfolio in Dec 2022 also displayed. Over this 27-year period, the VIX-timed portfolio, for

instance, generates nearly twice the value of the constant-weight portfolio. From Figure

14, we can again clearly see that during both the 2008 Crisis and the COVID-19 Crisis, our

timing portfolio helped contain losses and accelerate value recovery relative to a fixed-

weight portfolio, explaining the smaller drawdowns.

Johnson (2017) considers a strategy where each day, he buys (sells subject to margin

requirements) one-month S&P 500 ATM straddles if "slope" (the second principal com-

ponent) of VIX term structure falls within the lowest (highest) 20% of historical realized

"slopes." Presumably, the effectiveness of this strategy may be influenced by the initial

OOS time period, which impacts the historical distribution of realized "slopes." Differ-

ently, our approach relies on simple volatility measures and exhibits robustness across

various subsamples.

5 Conclusion

We develop timing strategies for the VRP that are analogous to equity premium timing

strategies based on realized volatility, as in Moreira and Muir (2017). These strategies

involve trading two assets: a variance asset and a risk-free asset. To begin, we examine

a benchmark portfolio with a fixed weight on the variance asset each month. While this

simple strategy already delivers remarkable long-term returns, we show that the portfo-

lio’s performance can be significantly enhanced by incorporating various timing factors,

including several volatility measures and an ex-ante VRP measure. We find the simple

volatility-managed strategies are particularly effective and robust. Our findings remain

robust in both older and recent times and across three variance assets: variance swaps,

VIX futures, and S&P 500 straddles. Our findings are unlikely affected by bid-ask spreads

and hold after accounting for margin requirements.

Our portfolios improve performance by reducing negative exposure to the variance as-
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sets once observing an increase in volatility. Essentially, we exploit the puzzle of the neg-

ative volatility-VRP relationship, which has been highlighted in several previous studies

such as Cheng (2019). Notably, we find that, ex-post, various timing portfolios generate

positive alpha and help reduce beta/exposure to constant-weight variance asset portfo-

lio returns almost only during high-volatility regimes, not in low-volatility regimes. Our

such findings are consistent with Yang (2022) which estimates a regime-switch model

and finds that the puzzling negative volatility-VRP relation is mostly driven by volatility-

spike periods.

However, we also note that the performance analysis is conducted in an ex-post con-

text. Due to two fundamental challenges, ex-post findings do not automatically suggest

a straightforward method to enhance ex-ante timing strategies. First, even in stable peri-

ods, volatility spikes can arrive all of a sudden and are hard to predict. Second, volatility

spikes might have complex nature, either jumps or structural breaks, that is hard to deter-

mine ex-ante. We leave the exploration of regime-conditional timing strategies for future

research.
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Appendix A Regime-Conditional Predictive Regressions

We present further evidence regarding regime-conditional predictability. Figure 15 illus-

trates the coefficients and t-statistics from the unconditional OLS predictive regressions

using the whole sample. We draw upon three variance asset returns (variance swaps, VIX

futures, and straddles) and two volatility measures: RV and IV. As observed, the negative

or weak relationship between month-t volatility and month-t+1 realized VRP is mainly

driven by the occurrence of large negative realized VRP in month-t+1, which is typically

associated with large volatility spikes in month t. In other words, the puzzling negative

predictive relation is driven by a bunch of "outliers" located in the lower right corner of

the graph.

In Figures 16 and 17, we plot the predictive regression coefficients and t-statistics con-

ditional on the absence of such large spikes in month t as well as month t+1. Notably,

once we isolate away the influence of these large spikes, all the predictive relationships

exhibit statistically positive signs. We conclude that, in long-lasting stable periods, small

volatility shocks positively predict realized VRP in the next month.

It is important to note that in Figure 17, we didn’t condition on the level of volatility

in month t, yet we still observe no puzzle. This means that volatility spikes occurring

only in month-t but not persisting into month-t+1 do not predict negative realized VRP

in month t+1. In other words, if a large volatility spike takes place in month-t but quickly

diminishes in month-t+1, it typically does not generate a puzzling negative realized VRP

in month t+1. A negative predictive relation between month t volatility and month t+1

realized VRPs only shows up only when "a large volatility spike occurs in month-t and

persists into month-t+1." This evidence is highly consistent with the view in Yang (2022)

that only "persistent" or "structural" volatility spikes predict negative VRPs, while a tran-

sitory volatility jump does not.

31

Electronic copy available at: https://ssrn.com/abstract=4761614



The above evidence of course corroborates our own findings that volatility-managed

variance asset portfolios exhibit much stronger performance during high-volatility regimes

(see Tables 6, 11 and 13). The enhanced performance of our timing portfolios relative to

the original variance assets is essentially driven by a small bunch of "outling" periods.

This is the case for all three variance assets.

Finally, we note that the above analysis is conducted in an ex-post context. In an ex-

post examination of portfolio performance, we find that the enhancement is driven by

periods of large volatility spikes, particularly persistent large spikes. While one might be

tempted to think that a regime-dependent timing strategy can be developed, ex-post find-

ings do not automatically suggest a straightforward method to enhance ex-ante timing

strategies, due to two fundamental challenges.

Firstly, ex-ante, it is difficult to predict random occurrence of a large volatility spike,

which results in large negative realized VRPs. During low-volatility periods, where volatil-

ity and risk premia exhibit small movement, these substantial negative realized VRPs

stand out as outliers that can swiftly attenuate away the positive relations between volatil-

ity and next-month realized VRPs (that should have been seen in stable periods). In fact,

this is the main reason why we did not observe an increasing pattern of VRPs with volatil-

ity levels across the first several portfolios when following Moreira and Muir (2017) to sort

portfolios based on the current month’s volatility levels (see Figures 1, 2, and 3). The pos-

itive relations between VRPs and volatility levels are attenuated away due to the occur-

rence of random rare large volatility spikes in the subsequent month, which the portfolio

sorting method does not account for.

Secondly, even if a volatility spike has occurred, it is hard to determine upfront whether

the spike observed in the current month is a transient jump that will revert in the next

month (resulting in a positive VRP response) or a persistent structural break that will en-

dure for an extended period (resulting in a negative VRP response). This distinction can
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only be made ex-post.

Thus, we conclude that although we observe that ex-post portfolio performance is

predominantly driven by persistent large volatility spikes, this does not necessarily im-

ply that there is an easy way to leverage this pattern to enhance ex-ante timing strategy

performance. Thus, in practice, we prefer to adopt simpler timing strategies.
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Table 1. Motivating evidence: in-sample predictive regressions

The table displays in-sample OLS predictive regression coefficients and R-squared. LHS
is next-month realized return on a one-month variance swap (annualized in percentage).
RHS is a market volatility measure: realized volatility, implied volatility, and GARCH(1,1)
one-month volatility forecast (annualized in percentage). Sample period is monthly Jan
1990 - Nov 2023. t-stat is based on Newey-West standard errors with 3 lags.

RVt+1

V IX2
t
− 1 = const+ βXt + εt+1

Xt = RVt IVt GARCH(1, 1)t
β 9.82 9.79 16.63
t-stat (2.00) (1.42) (2.47)
R2 1.4% 0.86% 2.21%
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Table 2. Motivating evidence: OOS R-squared.

The table displays OOS OLS predictive regression R-squared. We keep the longest OOS
periods, Mar 1990 - Nov 2023. We follow Welch and Goyal (2008) to compute OOS R-
squared as

R2
OOS = 1−

∑T−1
t=0 (r

vs
t+1 − µ̂t)

2∑T−1
t=0 (r

vs
t+1 − r̄t)2

, (A.1)

where µ̂t is the filtered value of the expected variance swap return using data only up
until month t to estimate OLS parameters α̂, β̂: rvst+1 = α̂ + β̂Xt + εt+1. The denominator
r̄vst is the historical mean of variance swap returns up until month t.

Xt = RVt IVt GARCH(1, 1)t
3.26% 2.63% 4.61%
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Table 3. Out-of-sample strategy performance: longest periods.

In-sample: Jan 1990 - Dec 1991. Out-of-sample: Jan 1992 - Nov 2023. All variables
are annualized. RVt is realized volatility, V IXt is implied volatility, GARCH(1, 1)t is
GARCH(1,1)’s forecast of next-month stock market return volatility. Each month-end t,
GARCH(1,1) is fitted to historical daily stock market return since 1986. Results are robust
to using other starting time, such as 1990, 1970 etc. 1 − Et[RVt+1]

V IXt
is conditional volatility

risk premium in returns. To obtain Et[RVt+1], each month t, a VAR of (RVt, V IXt) with
5 lags is fitted to historical monthly data since 1990. Results are robust to different lags.
t-stat (in parenthesis) is based on Newey-West s.e. with 3 lags.

VRP timing EP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

buy-hold 1
RVt

excess return 0.239 0.248 0.253 0.273 0.268 0.075 0.090
(7.40) (7.57) (7.90) (8.44) (8.08) (2.75) (3.21)

std 0.154 0.154 0.154 0.154 0.154 0.154 0.154
S.R. 1.54 1.61 1.63 1.76 1.74 0.48 0.58
skewness -4.40 -4.13 -4.06 -3.74 -2.81 -0.76 -0.83
kurtosis 28.94 34.36 28.19 24.08 18.48 4.55 16.68
max. drawdown -0.35 -0.42 -0.34 -0.32 -0.31 -0.19 -0.35
average weight wt -0.07 -0.06 -0.07 -0.07 -0.07 1 1.11

Fama-French 3 + Mom
α 0.184 0.202 0.206 0.222 0.219 0.033

(5.93) (6.45) (6.75) (7.53) (7.17) (1.37)
βMKT 0.57 0.46 0.48 0.51 0.49 0.67

(5.81) (6.27) (6.08) (6.95) (7.18) (8.67)
βHML 0.13 0.11 0.07 0.10 0.05 0.04

(1.31) (1.60) (1.07) (1.32) (0.63) (0.70)
βSMB 0.16 0.09 0.10 0.12 0.14 -0.04

(2.71) (1.47) (1.89) (2.10) (2.24) (-0.61)
βMOM 0.12 0.14 0.13 0.15 0.17 0.14

(3.43) (3.40) (3.33) (3.86) (4.81) (3.70)
R2 0.33 0.21 0.23 0.26 0.25 0.40
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Table 4. Predictive correlation.

The table displays the correlation between portfolio weight and next-month variance
swap realized return. Test period is Jan 1992 - Nov 2023.

wvar
t wgarch

t wiv
t wrv

t
RVt+1

V IX2
t
− 1 0.12 0.13 0.07 0.08
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Table 5. Correlation between weights.

The table displays the correlation between portfolio weights for different strategies. Test
period is Jan 1992 - Nov 2023.

wvar
t wgarch

t wiv
t wrv

t

wvar
t 1.00 0.39 0.18 0.24

wgarch
t 0.39 1.00 0.78 0.84

wiv
t 0.18 0.78 1.00 0.82

wrv
t 0.24 0.84 0.82 1.00
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Table 6. Conditional regressions: longest periods.

Test period is Jan 1992 - Nov 2023. All variables are annualized. We define month t as
low-volatility (high-volatility) regime if RVt < 20 (RVt > 20). Conditional on the two
regimes respectively, we run ft-timing portfolio excess returns onto ft = const portfolio
excess returns. t-stat (in parenthesis) is based on Newey-West s.e. with 3 lags.

VRP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

Low-volatility regime
α 0.03 0.01 0.03 0.04

(0.59) (0.31) (1.49) (1.55)
βrvs,cwt+1

1.01 1.07 1.08 0.96
(7.60) (12.99) (20.42) (11.87)

R2 0.81 0.92 0.96 0.81
High-volatility regime

α 0.01 0.02 0.03 0.07
(0.43) (1.86) (1.95) (1.57)

βrvs,cwt+1
0.43 0.51 0.54 0.65

(7.75) (14.68) (9.99) (5.59)
R2 0.93 0.94 0.92 0.68
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Table 7. Out-of-sample strategy performance: recent periods.

In-sample: Jan 1990 - July 2006. Out-of-sample: Aug 2006 - Nov 2023. All variables
are annualized. RVt is realized volatility, V IXt is implied volatility, GARCH(1, 1)t is
GARCH(1,1)’s forecast of next-month stock market return volatility. Each month-end t,
GARCH(1,1) is fitted to historical daily stock market return since 1986. Results are robust
to using other starting time, such as 1990, 1970 etc. 1 − Et[RVt+1]

V IXt
is conditional volatility

risk premium in returns. To obtain Et[RVt+1], each month t, a VAR of (RVt, V IXt) with
5 lags is fitted to historical monthly data since 1990. Results are robust to different lags.
t-stat (in parenthesis) is based on Newey-West s.e. with 3 lags.

VRP timing EP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

buy-hold 1
RVt

excess return 0.144 0.145 0.154 0.168 0.155 0.085 0.083
(3.17) (3.35) (3.57) (3.82) (3.43) (2.15) (2.03)

std 0.163 0.163 0.163 0.163 0.163 0.163 0.163
S.R. 0.87 0.87 0.94 1.02 0.94 0.52 0.50
skewness -3.90 -4.21 -3.75 -3.58 -3.40 -0.73 -2.09
kurtosis 21.05 28.98 21.44 19.47 20.10 4.41 24.19
max. drawdown -0.30 -0.38 -0.29 -0.29 -0.30 -0.19 -0.36
average weight wt -0.06 -0.05 -0.06 -0.06 -0.05 1 1.08

Fama-French 3 + Mom
α 0.090 0.099 0.104 0.118 0.106 0.029

(2.23) (2.41) (2.57) (3.00) (2.58) (0.74)
βMKT 0.64 0.52 0.56 0.57 0.55 0.63

(5.00) (4.97) (5.12) (5.51) (5.33) (5.48)
βHML -0.01 -0.05 -0.08 -0.05 -0.04 -0.03

(-0.04) (-0.37) (-0.71) (-0.42) (-0.28) (-0.32)
βSMB 0.08 0.07 0.01 0.06 0.08 0.01

(0.83) (0.53) (0.13) (0.56) (0.66) (0.08)
βMOM 0.10 0.13 0.12 0.13 0.17 0.13

(1.92) (2.00) (2.00) (2.22) (3.04) (2.00)
R2 0.38 0.24 0.28 0.30 0.27 0.35
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Table 8. Out-of-sample strategy performance: using actual price data

Data is based on monthly one-month variance swap prices provided in Dew-Becker,
Giglio, Le, and Rodriguez (2017). In-sample: Jan 1990 - Dec 1995. Out-of-sample: Jan 1996
- Sep 2013. All variables are annualized. RVt is realized volatility, V IXt is implied volatil-
ity, GARCH(1, 1)t is GARCH(1,1)’s forecast of next-month stock market return volatility.
Each month-end t, GARCH(1,1) is fitted to historical daily stock market return since 1986.
Results are robust to using other starting time, such as 1990, 1970 etc. 1 − Et[RVt+1]

V IXt
is con-

ditional volatility risk premium in returns. To obtain Et[RVt+1], each month t, a VAR of
(RVt, V IXt) with 5 lags is fitted to historical monthly data since 1990. Results are robust
to different lags. t-stat (in parenthesis) is based on Newey-West s.e. with 3 lags.

VRP timing EP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

buy-hold 1
RVt

excess return 0.210 0.263 0.232 0.246 0.278 0.052 0.082
(4.24) (5.36) (4.81) (5.07) (5.53) (1.33) (2.07)

std 0.165 0.165 0.165 0.165 0.165 0.165 0.165
S.R. 1.26 1.58 1.39 1.48 1.66 0.32 0.50
skewness -5.43 -3.42 -5.12 -4.78 -2.81 -0.87 -0.23
kurtosis 46.94 25.12 46.64 41.38 19.89 4.33 6.51
max. drawdown -0.45 -0.37 -0.45 -0.43 -0.35 -0.19 -0.21
average weight wt -0.07 -0.08 -0.07 -0.08 -0.08 1 1.18

Fama-French 3 + Mom
α 0.170 0.220 0.192 0.205 0.237 0.038

(4.15) (5.73) (4.98) (5.39) (6.17) (1.21)
βMKT 0.54 0.52 0.50 0.52 0.53 0.76

(4.06) (5.73) (4.51) (5.18) (6.65) (7.87)
βHML -0.02 0.05 -0.00 0.00 -0.08 -0.01

(-0.16) (0.45) (-0.01) (0.03) (-0.73) (-0.10)
βSMB 0.12 0.08 0.11 0.09 0.10 -0.05

(1.73) (1.04) (1.52) (1.16) (1.17) (-0.67)
βMOM 0.13 0.17 0.15 0.16 0.19 0.13

(3.66) (4.50) (4.26) (4.57) (5.14) (3.47)
R2 0.30 0.27 0.26 0.27 0.30 0.53
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Table 9. Correlation between constant-maturity variance asset returns.

The table displays the correlation between three constant-maturity variance asset returns.
Data is monthly Apr 2004 - June 2019.

rvst rvixt −rst,shortt

rvst 1.00 0.69 0.87
rvixt 0.69 1.00 0.74
−rst,shortt 0.87 0.74 1.00
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Table 10. Out-of-sample strategy performance: VIX futures.

Data is based on one-month constant-maturity VIX futures returns provided in Johnson
(2017), augmented with the most recent data obtained from CBOE. We roll-over daily re-
turns into monthly returns. In-sample: Jan 1990 - Mar 2004. Out-of-sample: Apr 2004 -
Nov 2023. All variables are annualized. RVt is realized volatility. V IXt is implied volatil-
ity. GARCH(1, 1)t is GARCH(1,1)’s forecast of next-month stock market return volatility.
Each month-end t, GARCH(1,1) is fitted to historical daily stock market return since 1986.
Results are robust to using other starting time, such as 1990, 1970 etc. 1 − Et[RVt+1]

V IXt
is con-

ditional volatility risk premium in returns. To obtain Et[RVt+1], each month t, a VAR of
(RVt, V IXt) with 5 lags is fitted to historical monthly data since 1990. Results are robust
to different lags. t-stat (in parenthesis) is based on Newey-West s.e. with 3 lags.

VRP timing EP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

buy-hold 1
RVt

excess return 0.095 0.106 0.112 0.123 0.107 0.080 0.078
(2.52) (2.80) (2.96) (3.20) (2.74) (2.27) (2.18)

std 0.156 0.156 0.156 0.156 0.156 0.156 0.156
S.R. 0.61 0.68 0.72 0.78 0.68 0.51 0.50
skewness -2.86 -1.96 -2.03 -1.59 -1.67 -0.73 -2.00
kurtosis 16.49 9.65 9.91 6.76 9.98 4.69 23.81
max. drawdown -0.28 -0.25 -0.26 -0.18 -0.25 -0.19 -0.36
average weight wt -0.22 -0.25 -0.26 -0.26 -0.23 1 1.09

Fama-French 3 + Mom
α 0.031 0.052 0.052 0.063 0.051 0.025

(1.12) (1.57) (1.66) (2.04) (1.44) (0.74)
βMKT 0.78 0.65 0.72 0.72 0.66 0.63

(8.59) (7.75) (8.86) (9.31) (7.53) (5.72)
βHML 0.11 0.04 -0.01 0.05 0.03 -0.06

(0.94) (0.38) (-0.12) (0.49) (0.20) (-0.60)
βSMB 0.03 0.05 0.03 0.03 -0.07 0.07

(0.94) (0.45) (0.38) (0.28) (-0.58) (0.55)
βMOM 0.07 0.11 0.11 0.11 0.14 0.14

(1.51) (1.92) (2.16) (2.10) (2.56) (2.44)
R2 0.61 0.40 0.49 0.49 0.35 0.37
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Table 11. Conditional regressions: VIX futures.

Test period is Apr 2004 - Nov 2023. All variables are annualized. We define month t as
low-volatility (high-volatility) regime if RVt < 20 (RVt > 20). Conditional on the two
regimes respectively, we run ft-timing portfolio excess returns onto ft = const portfolio
excess returns. t-stat (in parenthesis) is based on Newey-West s.e. with 3 lags.

VRP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

Low-volatility regime
α -0.01 -0.00 0.00 -0.01

(-0.47) (-0.26) (0.30) (-0.64)
βrvix,cwt+1

1.20 1.20 1.22 1.09
(17.85) (16.11) (38.75) (13.11)

R2 0.88 0.93 0.96 0.80
High-volatility regime

α 0.02 0.03 0.04 0.08
(1.00) (1.87) (2.13) (1.41)

βrvix,cwt+1
0.43 0.55 0.52 0.49

(5.19) (24.02) (7.29) (3.55)
R2 0.89 0.96 0.91 0.55

44

Electronic copy available at: https://ssrn.com/abstract=4761614



Table 12. Out-of-sample strategy performance: S&P 500 ATM straddles.

Data is based on (short) one-month constant-maturity ATM S&P 500 straddle returns pro-
vided in Johnson (2017), augmented with the most recent data obtained from Option-
Metrics. We roll-over daily returns into monthly returns. In-sample: Jan 1990 - Dec 1995.
Out-of-sample: Jan 1996 - Dec 2022. All variables are annualized. RVt is realized volatility.
V IXt is implied volatility. GARCH(1, 1)t is GARCH(1,1)’s forecast of next-month stock
market return volatility. Each month-end t, GARCH(1,1) is fitted to historical daily stock
market return since 1986. Results are robust to using other starting time, such as 1990,
1970 etc. 1− Et[RVt+1]

V IXt
is conditional volatility risk premium in returns. To obtain Et[RVt+1],

each month t, a VAR of (RVt, V IXt) with 5 lags is fitted to historical monthly data since
1990. Results are robust to different lags. t-stat (in parenthesis) is based on Newey-West
s.e. with 3 lags.

VRP timing EP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

buy-hold 1
RVt

excess return 0.092 0.101 0.112 0.107 0.101 0.067 0.069
(2.25) (2.48) (2.75) (2.64) (2.58) (2.13) (2.17)

std 0.162 0.162 0.162 0.162 0.162 0.162 0.162
S.R. 0.51 0.55 0.62 0.58 0.55 0.41 0.43
skewness -4.07 -2.72 -3.01 -3.36 -2.90 -0.77 -1.77
kurtosis 28.61 13.96 17.32 21.70 21.37 4.27 23.04
max. drawdown -0.39 -0.28 -0.34 -0.35 -0.38 -0.19 -0.39
average weight wt -0.60 -0.78 -0.77 -0.73 -0.62 1 1.06
average weight wtP st

t

20%×SPXt
-0.12 -0.13 -0.14 -0.13 -0.12

Fama-French 3 + Mom
α 0.049 0.057 0.067 0.064 0.061 0.020

(1.20) (1.57) (1.79) (1.73) (1.74) (0.70)
βMKT 0.35 0.32 0.34 0.31 0.27 0.66

(2.48) (3.57) (3.06) (3.29) (3.24) (7.84)
βHML 0.11 0.12 0.07 0.09 0.06 0.02

(0.90) (1.17) (0.80) (0.96) (0.60) (0.28)
βSMB 0.29 0.26 0.27 0.27 0.29 -0.01

(3.68) (3.53) (3.57) (3.42) (2.41) (-0.18)
βMOM 0.04 0.07 0.08 0.07 0.09 0.12

(0.92) (1.51) (1.75) (1.61) (2.11) (2.92)
R2 0.19 0.15 0.16 0.14 0.12 0.40
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Table 13. Conditional regressions: S&P 500 ATM straddles.

Test period is Jan 1996 - Dec 2022. All variables are annualized. We define month t as
low-volatility (high-volatility) regime if RVt < 20 (RVt > 20). Conditional on the two
regimes respectively, we run ft-timing portfolio excess returns onto ft = const portfolio
excess returns. t-stat (in parenthesis) is based on Newey-West s.e. with 3 lags.

VRP timing
ft const 1

RVt

1
V IXt

1
GARCH(1,1)t

1− Et[RVt+1]
V IXt

Low-volatility regime
α 0.01 0.01 -0.00 -0.00

(0.31) (1.27) (-0.01) (-0.06)
βrst,cwt+1

1.21 1.19 1.25 1.13
(12.88) (25.67) (19.46) (8.16)

R2 0.89 0.94 0.97 0.84
High-volatility regime

α 0.02 0.03 0.04 0.06
(0.78) (1.86) (1.71) (1.43)

βrst,cwt+1
0.51 0.66 0.55 0.50

(5.12) (16.35) (5.87) (3.17)
R2 0.87 0.95 0.87 0.56
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Figure 1. Sorts on previous month’s realized volatility. Sample is monthly Jan 1990 - Nov 2023.
We use the monthly time-series of realized volatility to sort the following month’s variance swap
returns into five portfolios. Portfolio "1" ("5") looks at the properties of returns over the month fol-
lowing the lowest (highest) 20% of realized volatility months. We show (monthly) average returns,
(monthly) standard deviation of returns, (annualized) Sharpe ratio of returns, and probability of
NBER recessions by computing the average of an NBER recession dummy.
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Figure 2. Sorts on previous month’s implied volatility. Sample is monthly Jan 1990 - Nov 2023.
We use the monthly time-series of implied volatility to sort the following month’s variance swap
returns into five portfolios. Portfolio "1" ("5") looks at the properties of returns over the month fol-
lowing the lowest (highest) 20% of realized volatility months. We show (monthly) average returns,
(monthly) standard deviation of returns, (annualized) Sharpe ratio of returns, and probability of
NBER recessions by computing the average of an NBER recession dummy.

48

Electronic copy available at: https://ssrn.com/abstract=4761614



Average Return (monthly)

1 2 3 4 5
portfolio

-40

-30

-20

-10

0

%

Standard Deviation (monthly)

1 2 3 4 5
portfolio

0

20

40

60

80

100

%

Sharpe Ratio (annualized)

1 2 3 4 5
portfolio

-4

-3

-2

-1

0
Probability of Recession

1 2 3 4 5
portfolio

0

0.05

0.1

0.15

0.2

0.25

Figure 3. Sorts on previous month’s GARCH 1-month volatility forecast. Sample is monthly Jan
1990 - Nov 2023. We use the monthly time-series of GARCH(1,1)’s 1-month volatility forecast to
sort the following month’s variance swap returns into five portfolios. Portfolio "1" ("5") looks at
the properties of returns over the month following the lowest (highest) 20% of realized volatility
months. We show (monthly) average returns, (monthly) standard deviation of returns, (annual-
ized) Sharpe ratio of returns, and probability of NBER recessions by computing the average of an
NBER recession dummy.
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Figure 4. Portfolio weight on variance swaps: longest periods. Test period is Jan 1992 - Nov 2023.
The top panel plots implied and realized volatility. The middle panel plots next-month realized
return on a one-month variance swap. The bottom panel plots portfolio weight on the variance
swap for each strategy.
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Figure 5. Cumulative portfolio values: longest periods. Starting value is $1 on Jan 1992 for each
strategy. Test period is Jan 1992 - Nov 2023. The top panel plots cumulative portfolio value for
each strategy. Ending value for each strategy is attached. The bottom panel plots drawdowns for
each strategy.
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Figure 6. Portfolio weight on variance swaps: recent periods. Test period is Aug 2006 - Nov 2023.
The top panel plots implied and realized volatility. The middle panel plots next-month realized
return on a one-month variance swap. The bottom panel plots portfolio weight on the variance
swap for each strategy.
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Figure 7. Cumulative portfolio values: recent periods. Starting value is $1 on Aug 2006 for each
strategy. Test period is Aug 2006 - Nov 2023. The top panel plots cumulative portfolio value for
each strategy. Ending value for each strategy is attached. The bottom panel plots drawdowns for
each strategy.
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Figure 8. Portfolio weight on variance swaps: using actual price data. Test period is Jan 1996 -
Sep 2013. The top panel plots implied and realized volatility. The middle panel plots next-month
realized return on a one-month variance swap using data provided in Dew-Becker, Giglio, Le, and
Rodriguez (2017). The bottom panel plots portfolio weight on the variance swap for each strategy.
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Figure 9. Cumulative portfolio values: using actual price data. Data is based on variance swap
price data provided in Dew-Becker, Giglio, Le, and Rodriguez (2017). Starting value is $1 on
Jan 1996 for each strategy. Test period is Jan 1996 - Sep 2013. The top panel plots cumulative
portfolio value for each strategy. Ending value for each strategy is attached. The bottom panel
plots drawdowns for each strategy.
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Figure 10. A comparison of three variance asset returns. We first get daily returns for a one-
month constant-maturity variance-swap/VIX-futures/S&P 500 ATM straddle position provided
by Johnson (2017). Within each month, we implement a roll-over strategy to generate the total
return for that specific month. We then plot the obtained monthly return. For straddles, we use
(negative) short returns provided by Johnson (2017), which assumes a margin requirement equal
to 20% of current S&P 500 level, since our timing porfolios prescribe short selling variance assets.
We augment the VIX futures and straddle returns from Johnson (2017) with the most recent time
data obtained from CBOE and OptionMetrics.
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Figure 11. Portfolio weight on VIX futures. We first get daily returns for a one-month constant-
maturity VIX futures position provided by Johnson (2017). Within each month, we implement a
roll-over strategy to generate the total return for that specific month. We augment the data from
Johnson (2017) with the most recent time data obtained from CBOE. Test period is Apr 2004 - Nov
2023. The top panel plots implied and realized volatility. The middle panel plots next-month
realized return on a constant-maturity one-month VIX futures. The bottom panel plots portfolio
weight on VIX futures for each strategy.
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Figure 12. Cumulative portfolio values: VIX futures. Starting value is $1 on Apr 2004 for each
strategy. Test period is Apr 2004 - Nov 2023. The top panel plots cumulative portfolio value for
each strategy. Ending value for each portfolio is attached. The bottom panel plots drawdowns for
each strategy.
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Figure 13. Portfolio weight on S&P 500 ATM straddles. We first get daily returns for a one-month
constant-maturity S&P 500 ATM straddle (short) position provided by Johnson (2017). Within each
month, we implement a roll-over strategy to generate the total return for that specific month. We
use short returns as provided by Johnson (2017), which assumes a margin requirement equal to
20% of current S&P 500 level. We augment the data from Johnson (2017) with the most recent time
data obtained from OptionMetrics. Test period is Jan 1996 - Dec 2022. The top panel plots implied
and realized volatility. The second panel plots next-month realized return on a constant-maturity
one-month S&P 500 ATM straddle. The third and fourth panel respectively plots portfolio weight
on the straddle for each strategy in terms of deposited margin and straddles’ market values.
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Figure 14. Cumulative portfolio values: S&P 500 ATM straddles. Starting value is $1 on Jan 1996
for each strategy. Test period is Jan 1996 - Dec 2022. The top panel plots cumulative portfolio value
for each strategy. Ending value for each portfolio is attached. The bottom panel plots drawdowns
for each strategy.
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Figure 15. Predictive regressions: unconditional. We run predictive regressions of next-month
(negative) variance swap returns, (negative) constant-maturity VIX futures portfolio returns, and
(negative) constant-maturity straddle portfolio returns onto this month’s realized volatility (RV)
and implied volatility (VIX). We use full-sample. t-stat is heteroscedasticity robust. Data is as in
the main text.
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Figure 16. Predictive regressions: conditional on low-volatility regime throughout. We run pre-
dictive regressions of next-month (negative) variance swap returns, (negative) constant-maturity
VIX futures portfolio returns, and (negative) constant-maturity straddle portfolio returns onto this
month’s realized volatility (RV) and implied volatility (VIX). We condition on both this and next
month’s RV<20. t-stat is heteroscedasticity robust. Data is as in the main text.
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Figure 17. Predictive regressions: conditional on low-volatility regime next month. We run pre-
dictive regressions of next-month (negative) variance swap returns, (negative) constant-maturity
VIX futures portfolio returns, and (negative) constant-maturity straddle portfolio returns onto this
month’s realized volatility (RV) and implied volatility (VIX). We condition on next month’s RV<20.
t-stat is heteroscedasticity robust. Data is as in the main text.
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