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Misallocation reduces total factor productivity and economic growth, implying

substantial adverse welfare effects. Misallocation measures should therefore provide

a more informative empirical stochastic discount factor than aggregate consumption

time series in small samples. We find evidence for misallocation-driven low-frequency

movements in both aggregate growth and stock returns. We then develop an en-

dogenous growth model with heterogeneous firms, intermediate goods, and financial

frictions, in which misallocation emerges analytically as a crucial state variable. In

equilibrium, misallocation endogenously generates long-run uncertainty about eco-

nomic growth by distorting innovation and R&D decisions, leading to significant

welfare losses and risk premia in capital markets. Empirically, a two-factor model

with market and misallocation factors prices size, book-to-market, momentum, and

bond portfolios with an R-squared and a mean absolute pricing error close to the
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1 Introduction

In the last decade, one of the most important developments in the growth literature is the
enhanced appreciation of the role of misallocation in helping us understand economic
growth (Jones, 2013). The link between misallocation and growth prospects can potentially
shed light on the fundamental forces that drive long-run consumption risk (Bansal and
Yaron, 2004), a mechanism that quantitatively justifies many asset pricing moments.

This paper studies the connection between misallocation and long-run consumption
risk by developing a novel analytically tractable framework, offering insights on the
asset pricing implications of misallocation. In our model, economic growth is driven by
endogenous technological advances through the invention of intermediate goods as in
standard endogenous growth models (e.g., Romer, 1987, 1990; Jones, 1995). Final goods
are produced by heterogeneous firms which face two financial frictions because of agency
conflicts — an equity market constraint for payout and issuance and a collateral constraint
for debt. Specifically, the equity market constraint for payout and issuance arises as in
Myers (2000) and Lambrecht and Myers (2008, 2012), and the collateral constraint for
debt arises as in Buera and Shin (2013) and Moll (2014), among many others. The
misallocation of capital among firms of different productivity emerges analytically as
a crucial endogenous state variable, which characterizes the evolution of the economy.
In equilibrium, short-run (even i.i.d.) aggregate shocks can generate persistent shifts
in demand for research and development (R&D) through their long-lasting effects on
misallocation, which in turn leads to persistent fluctuations in economic growth; as a
consequence, our model endogenizes a low-frequency component of economic growth
driven by slow-moving misallocation, which has first-order asset pricing implications in
capital markets.

Our paper contributes to existing literature in three ways. First, we show that misal-
location drives low-frequency movements in R&D intensity and thus economic growth
in both the model and data. In our model, a covariance-type misallocation measure
endogenously arises as a sufficient statistic that captures the general-equilibrium effect of
the multivariate cross-sectional distribution of heterogeneous firms. Shocks that impact an
economy’s misallocation can have persistent effects on the economy’s growth rate through
R&D decisions, providing a misallocation-based explanation for long-run consumption
risk (Bansal and Yaron, 2004; Hansen, Heaton and Li, 2008). In the data, we find evidence
for misallocation-driven low-frequency movements in both aggregate growth and stock
returns.

Second, we show that, as a macroeconomic factor, the misallocation measure motivated
by our model has significant cross-sectional asset pricing implications. A two-factor model
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with market and misallocation factors prices size, book-to-market, momentum, and bond
portfolios with an R-squared of 53% and a mean absolute pricing error (MAPE) of 1.82,
which are close to those implied by the Fama-French three-factor model (62% and 1.90).
Importantly, future accumulated consumption growth has little explanatory power for
portfolio returns once our misallocation measure is included as a factor.

Third, our model delineates the tight link between firms’ idiosyncratic productivity
shocks and the low-frequency aggregate consumption risk. When firms’ idiosyncratic pro-
ductivity is more persistent, the economy’s misallocation, which determines the aggregate
total factor productivity (TFP) and output, also becomes more persistent. Consequently,
this generates more persistent variations in aggregate consumption growth in response
to aggregate shocks. By connecting the persistence in idiosyncratic productivity with
the persistence in aggregate consumption growth, our model implies that long-run risk
in aggregate consumption can be estimated based on granular firm-level data, which
helps address the issues of weak identification in the long-run risk literature (Chen, Dou
and Kogan, 2019; Cheng, Dou and Liao, 2020). This highlights the important role of
misallocation measures in estimating the empirical stochastic discount factor (SDF).

There are three sectors in our model economy. The innovation sector uses final
goods and existing stock of knowledge to produce new knowledge, which are blueprints
for new intermediate goods. An intermediate goods sector uses the designs from the
innovation sector together with final goods to produce differentiated goods, which are
intermediate goods for final goods production. The final goods sector uses capital, labor,
and intermediate goods to produce final goods. There exist a representative household
that owns firms in all sectors, a continuum of heterogeneous firms in the final goods
sector, and homogeneous firms in intermediate goods and innovation sectors.

Firms in the final goods sector are heterogeneous in productivity and capital. Produc-
tion takes place using capital, labor, and intermediate goods. Because of agency conflicts,
firms face an equity market constraint for payout and issuance and a collateral constraint
for debt. The collateral constraint generates capital misallocation among firms as in Buera
and Shin (2013) and Moll (2014). A higher misallocation results in a lower productivity in
the final goods sector, which reduces the aggregate demand for intermediate goods. This,
in turn, motivates innovators to invent new intermediate goods less intensively, leading
to a lower growth rate.

Firms endogenously choose their capacity utilization intensity. A higher capacity
utilization intensity allows firms to produce more outputs at the cost of bearing a higher
depreciation rate of capital. There are aggregate capital depreciation shocks, as in Gourio
(2012), Brunnermeier and Sannikov (2017), etc. In equilibrium, because more productive
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firms use their capital more intensively, aggregate capital depreciation shocks generate
endogenous fluctuations in the economy’s misallocation.

We show that the misallocation in the final goods sector emerges as an endogenous
state variable. Specifically, by applying the Berry-Esseen bound (Tikhomirov, 1980; Ben-
tkus, Gotze and Tikhomoirov, 1997), the capital share of firms of different productivity can
be approximated by a log-normal distribution. This parametric functional form implies
that the distribution of firms in the cross section is fully summarized by an endogenous
state variable, capturing the covariance between log capital and log productivity across
firms. This state variable determines the economy’s misallocation, based on which both
the steady state and transitional dynamics are characterized in closed form. We show
that a calibrated model can quantitatively reproduce the low-frequency components in
aggregate consumption growth and the high Sharpe ratio of equity returns as in the
data. Short-run i.i.d. shocks can generate persistent effects on the economy’s growth
because the endogenous misallocation is slow moving. Importantly, the persistence in
misallocation largely depends on the persistence in firms’ idiosyncratic productivity.

While our main contribution is theoretical, we also empirically test the main predic-
tions of our model. Motivated by the model, we construct a misallocation measure based
on the covariance between log productivity and log capital using the U.S. Compustat
data. We find evidence that a worse misallocation predicts declines in R&D intensity and
lower growth of aggregate consumption and output. In the cross section, a two-factor
model with market and misallocation factors prices size, book-to-market, momentum,
and bond portfolios with an R-squared and a MAPE close to the Fama-French three-
factor model. Future accumulated consumption growth has little explanatory power for
portfolio returns once our misallocation measure is included as a factor, suggesting that
long-run consumption growth affects asset returns through the persistent variation in
misallocation.

Related Literature. Our paper is related to three strands of literature. First, we con-
tribute to the long-run risk literature in finance (e.g., Bansal and Yaron, 2004). Various
studies try to justify long-run risk with micro foundations (e.g., Ai, 2010; Kaltenbrunner
and Lochstoer, 2010; Garleanu, Panageas and Yu, 2012; Kung and Schmid, 2015; Collin-
Dufresne, Johannes and Lochstoer, 2016; Ai, Li and Yang, 2020; Gârleanu and Panageas,
2020; Croce, Nguyen and Raymond, 2021). Our paper is mostly related to Kung and
Schmid (2015) who show that R&D endogenously drives a small, persistent component
in productivity, which generates long-run uncertainty about economic growth. Building
on the theoretical framework of Kung and Schmid (2015), we introduce heterogeneous
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firms to the final goods sector to generate endogenous misallocation as in Moll (2014).
Our theory rationalizes long-run consumption risk through the equilibrium interactions
between endogenous misallocation and R&D incentives, which is also supported by
the data. Importantly, by connecting the persistence in idiosyncratic productivity with
the persistence in aggregate consumption growth, our model implies that long-run risk
in aggregate consumption can be estimated based on granular firm-level data, which
potentially helps address the issues of weak identification in the long-run risk literature
(Chen, Dou and Kogan, 2019; Cheng, Dou and Liao, 2020).

Second, our paper contributes to the large and growing literature on misallocation (e.g.,
Banerjee and Duflo, 2005; Foster, Haltiwanger and Syverson, 2008; Restuccia and Rogerson,
2008; Buera and Shin, 2011; Jones, 2011; Buera and Shin, 2013; Jones, 2013; Midrigan
and Xu, 2014; Moll, 2014; Acemoglu et al., 2018; Peters, 2020), and Hsieh and Klenow
(2009); Bartelsman, Haltiwanger and Scarpetta (2013). Notable works on misallocation
in the finance literature include, for example, Eisfeldt and Rampini (2006, 2008b), Opp,
Parlour and Walden (2014), Fuchs, Green and Papanikolaou (2016), Ehouarne, Kuehn and
Schreindorfer (2017), van Binsbergen and Opp (2019), David, Schmid and Zeke (2019),
Ai, Li and Yang (2020), Ai et al. (2020), Lanteri and Rampini (2021), Whited and Zhao
(2021).1 Our model extends the tractable framework of Moll (2014) with intermediate
inputs, R&D, and aggregate shocks to generate endogenous stochastic growth. Our
paper provides the following insights to this literature. First, our model implies that
misallocation in production inputs of final goods producers can affect equilibrium growth
because it determines the profits of producing intermediate goods and thus innovators’
R&D incentives. Second, misallocation emerges naturally as an endogenous state variable
in our model, which motivates an intuitive empirical misallocation measure based on the
covariance between firms’ log productivity and log capital. Third, our model implies that
when idiosyncratic productivity is persistent, investors demand high risk premia because
the slow-moving misallocation incubates long-run consumption risk. Our results thus
complement the key insight of Moll (2014) who shows that misallocation is less severe in
the long-run steady state (without aggregate shocks) when idiosyncratic productivity is
more persistent.

Third, our paper is related to the literature on business cycles (e.g., Lucas, 1987).
Barlevy (2004) shows that the welfare cost of business cycles is large when fluctuations
affect the growth rate of consumption in a model with diminishing returns in investment.
The strong procyclical patterns of capital reallocation documented by Eisfeldt and Rampini
(2006, 2008b) suggest that misallocation can play an important role in determining the

1See Eisfeldt and Shi (2018) for a comprehensive survey.
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welfare costs of business cycles. Through persistent misallocation, our model rationalizes
long-run consumption risk and generates a high Sharpe ratio for equity returns, which
reflects investors’ aversion to aggregate risks. As a result, our model quantifies a large
welfare cost of business cycles following the approach of Alvarez and Jermann (2004,
2005).

The outline of the paper is as follows. Section 2 develops a model to depict the
equilibrium relation between misallocation and growth. Section 3 calibrates the model to
evaluate its quantitative implications. Section 4 provides empirical evidence to support
the model’s main mechanisms and predictions. Section 5 concludes.

2 Model

There are three sectors: a final goods sector, an intermediate goods sector, and an
R&D sector. The R&D sector invents new knowledge (i.e., blueprints for new varieties
of intermediate goods) using final goods and existing stock of knowledge, then sells
blueprints to the intermediate goods sector. The intermediate goods sector produces
differentiated intermediate goods using blueprints created by the R&D sector and final
goods, then sells intermediate goods to the final goods sector. The final goods sector uses
capital, labor, and intermediate goods to produce final goods. There is a representative
household that owns firms in all sectors, a continuum of heterogeneous firms in the final
goods sector, and homogeneous firms in the intermediate goods and R&D sectors.

2.1 Final Goods Sector

In the final goods sector, there is a continuum of firms of measure one, indexed by
i ∈ I ≡ [0, 1] and operated by managers. Firms are different from each other in their
idiosyncratic productivity zi,t and capital ai,t. At each point in time t, the distribution of
final goods firms is characterized by the joint probability density function (PDF), ϕt(a, z).

The firm produces output at intensity yi,t over [t, t+dt) using a production technology
with constant returns to scale:

yi,t =
[
(zi,tui,tki,t)

α`1−α
i,t

]1−ε
xε

i,t, with α, ε ∈ (0, 1), (1)

where labor `i,t is hired in a competitive labor market at the equilibrium wage wt. The
variable ki,t = ai,t + âi,t is the capital installed in production, which includes the firm’s
own capital ai,t and the leased capital âi,t borrowed from a competitive rental market at
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the equilibrium risk-free rate r f ,t.2

The firm’s output increases with its idiosyncratic productivity zi,t and endogenous
choice of capacity utilization intensity ui,t ∈ [0, 1]. Utilizing capital at intensity ui,t leads
to an amount of ui,tki,td∆t depreciation over [t, t + dt), where d∆t captures the stochastic
depreciation rate,

d∆t = δkdt + σkdWt. (2)

The standard Brownian motion Wt captures the aggregate capital depreciation shock
similar in spirit to that of Albuquerue and Wang (2008) and Gourio (2012). The parameters
δk, σk > 0 capture the constant and stochastic components of capital depreciation.

We assume that the firm’s own capital stock evolves according to

dai,t = −δaai,tdt + σaai,tdWt + dIi,t, (3)

where δa > 0 is the constant depreciation rate, and σadWt captures the capital efficiency
shock with σa > 0. The modeling of capital efficiency shocks has been widely adopted
in the literature.3 We assume that a single aggregate shock enters both equations (2)
and (3), which implies that improvement in the efficiency of new capital is associated
with depreciation of existing capital, capturing the displacement effect of new capital
(e.g., Gârleanu, Kogan and Panageas, 2012; Kogan et al., 2017; Kogan, Papanikolaou
and Stoffman, 2020). The variable dIi,t is the amount of final goods that is converted
to capital over [t, t + dt). Similar to Pástor and Veronesi (2012), we assume that profits
are reinvested, so that the firm’s investment rate dIi,t is equal to its profit after paying
operation expenses, interests, and dividends.

The composite xi,t in equation (1) consists of differentiated intermediate goods, given
by the constant elasticity of substitution (CES) aggregation:

xi,t =

(∫ Nt

0
xν

i,j,tdj
) 1

ν

, (4)

where xi,j,t is the quantity of intermediate goods j ∈ [0, Nt]. The elasticity of substitution
among differentiated intermediate goods is 1/(1 − ν) > 0. The economy’s stock of
knowledge (i.e., the variety of differentiated intermediate goods created based on existing
blueprints) at t is Nt. Technological advances through the expansion of the variety of
intermediate inputs, Nt, drives endogenous growth, as in Romer (1987, 1990) and Jones

2The capital leasing market is relevant for firms’ production and financial decisions (e.g., Eisfeldt and
Rampini, 2008a; Rampini and Viswanathan, 2013; Li and Tsou, 2021; Li and Xu, 2021).

3e.g., Sundaresan (1984), Cox, Ingersoll and Ross (1985), Kogan (2001, 2004), Gourio (2012), Di Tella
(2017), and Dou (2017).
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(1995). Denote by pj,t and pt the prices of the intermediate good j and the composite of
intermediate goods, respectively.

The firm’s idiosyncratic productivity zi,t evolves according to

d ln(zi,t) = −θ ln(zi,t)dt + σ
√

θdWi,t, (5)

where the standard Brownian motion Wi,t captures idiosyncratic shocks to firm i’s pro-
ductivity. The specification of the idiosyncratic process zi,t is similar to that of Moll
(2014). The parameter θ determines the persistence of idiosyncratic productivity zi,t. A
higher θ makes zi,t less persistent, implying that firms face higher uncertainty in their
future idiosyncratic productivity. Importantly, a change in θ does not affect the dispersion
in idiosyncratic productivity across firms, because θ scales both the drift term and the
diffusion term in equation (5).

2.2 Intermediate Goods Sector

There is a continuum of intermediate goods producers, indexed by j ∈ [0, Nt]. They
produce intermediate goods using final goods and blueprints created by firms in the R&D
sector. Specifically, intermediate goods producer j has monopoly power in setting prices,
facing a downward sloping demand for its output. Intermediate good producers buy
final goods and transform them to intermediate inputs, based on the blueprints they hold.
We assume that one unit of final goods can be transformed into one unit of intermediate
goods, meaning that the marginal cost of producing intermediate goods is unity. The
producer of intermediate good j solves

max
pj,t

πj,t = pj,tej,t − ej,t, (6)

subject to the demand curve:

ej,t =

(
pj,t

pt

) 1
ν−1

Xt, (7)

where Xt ≡
∫

i∈I xi,tdi is the aggregate demand for the composite of intermediate goods.
The value of a blueprint, denoted by vj,t, is the value of owning the exclusive rights

to produce intermediate goods j, which is given by the Hamilton-Jacobi-Bellman (HJB)
equation:

0 = Λt
(
πj,t − δbvj,t

)
dt + Et

[
d(Λtvj,t)

]
, (8)

where Λt is the SDF, and δb is the hazard rate at which an existing blueprint becomes
obsolete. Because of symmetry and homogeneity, all blueprints have identical values,
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vj,t ≡ vt, and all intermediate good producers make identical flow profits, πj,t ≡ πt.

2.3 R&D Sector

Intermediate goods producers are competitive and do not make profits in equilibrium.
They buy blueprints from innovators at the price vj,t. That is, innovators have full
bargaining power and seize all the surplus vj,t. Thus, vj,t is the value of creating the
blueprint for producing the intermediate good j, which shapes the incentive of innovators
to create new blueprints.

Blueprints are created by conducting R&D using final goods as in Comin and Gertler
(2006). The stock of knowledge Nt evolves as follows:

dNt = ϑtStdt− δbNtdt, (9)

where St is the aggregate R&D expenditure, and ϑt captures the productivity of innova-
tions, which is taken as exogenously given by individual innovators. In equilibrium, the
free-entry condition implies that the marginal return of R&D is equal to its marginal cost:

vtϑt = 1. (10)

Following Comin and Gertler (2006) and Kung and Schmid (2015), we specify

ϑt = χ

(
Nt

St

)h
, (11)

where h ∈ (0, 1). Equation (11) implies that there are positive spillovers of the aggregate
stock of knowledge (the term Nh

t ) as in Romer (1990) and Jones (1995), and that aggregate
R&D investment has decreasing marginal returns (the term S−h

t ), capturing the congestion
effect in developing new blueprints.

2.4 Agents

There is a continuum of households, with workers and managers who consume together.
Like in Dou (2017), only managers can manage final-good firms’ investments and opera-
tions. The managers can be executives, directors, and entrepreneurs; more broadly, they
can also be the controlling shareholders who are fully entrenched and have complete
control over the firm’s investment and payout policies (e.g., Albuquerue and Wang, 2008).
Each manager manages a final-good firm subject to agency problems. Workers lend funds
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to firms and hold equity claims on all firms. We assume that a full set of Arrow-Debreu
securities is available to households, so that idiosyncratic consumption risks can be
fully insured and there exists a representative household. The aggregate labor supply is
inelastic and normalized to be 1.

Preferences. The representative household has stochastic differential utility as in Duffie
and Epstein (1992a,b):

U0 = E0

[∫ ∞

0
f (Ct, Ut)dt

]
, (12)

where

f (Ct, Ut) =

(
1− γ

1− ψ−1

)
Ut

[(
Ct

[(1− γ)Ut]1/(1−γ)

)1−ψ−1

− δ

]
. (13)

This preference is a continuous-time version of the recursive preferences proposed by
Kreps and Porteus (1978), Epstein and Zin (1989), and Weil (1990). The felicity function f
is an aggregator over the current consumption rate Ct of final goods and future utility
level Ut. The coefficient δ is the subjective discount rate, the parameter ψ is the elasticity
of intertemporal substitution (EIS), and the parameter γ captures risk aversion.

The representative household maximizes utility (12) subject to the following budget
constraint:

dBt =
(
wtLt + r f ,tBt + Dt − Ct

)
dt, (14)

where wtLt is the wage income intensity, with Lt ≡ 1, Dt is the dividend intensity of all
firms, and Bt is the amount of bonds held by the household at t.

The representative household’s SDF is

Λt = exp
(∫ t

0
fU(Cs, Us)ds

)
ρ

1−γ

1−ψ−1 H
γ−ψ−1

1−ψ−1

t C−γ
t , (15)

where Ht is the consumption-wealth ratio of the representative household.

Limited Enforcement. An equity market constraint for payout/issuance and a credit
market collateral constraint for borrowing endogenously arise from limited enforcement
problems of equity and debt contracts.

The manager extracts pecuniary rents τai,tdt over [t, t + dt) when running the firm i.4

4Managers can extract rents because corporate governance is imperfect. In practice, it is difficult to
verify the cash flows generated by firms’ assets, even though cash flows are observable and shareholders’
property rights to firm assets are protected. For example, it is difficult to distinguish and verify rents and
business expenses. The rents here do not include nonpecuniary private benefits, such as prestige from
empire building (Eisfeldt and Rampini, 2008b).
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These rents represent the cash compensation above the manager’s wage (e.g., Myers, 2000;
Lambrecht and Myers, 2008, 2012). Shareholders have the option to intervene and take
control of the firm by replacing the manager. Intervention is costly because it requires
collective action (e.g., Myers, 2000) and can damage the firm’s talent-dependent customer
capital (e.g., Dou et al., 2020). In particular, we assume that a fraction τ/ρ of capital
ai,t is lost upon intervention with τ < ρ, after which shareholders will become the new
manager of the firm. In equilibrium, the manager will pay dividend up to the point
where shareholders would have no incentive to intervene, implying a payout intensity
policy di,t = ρai,t over [t, t + dt).

Moreover, the installed capital for production is ki,t = ai,t + âi,t, and the manager
can divert a fraction 1/λ of leased capital âi,t with λ ≥ 0. As a punishment, the firm
would lose his own capital ai,t. In equilibrium, the manager is able to borrow up to the
point where the manager has no incentive to divert leased capital, implying a collateral
constraint âi,t ≤ λai,t. The same form of collateral constraints is motivated similarly
and adopted widely in the literature (e.g., Banerjee and Newman, 2003; Jermann and
Quadrini, 2012; Buera and Shin, 2013; Moll, 2014).

The financial frictions can be summarized in the following proposition.

Proposition 1. Because of the agency problem with limited enforcement, the firm’s payout/issuance
policy is subject to the following equity market constraint:

di,t = ρai,t, (16)

where di,t is the dividend flow intensity over [t, t + dt); moreover, the firm’s leased capital is
subject to the following collateral constraint:

− ai,t ≤ âi,t ≤ λai,t. (17)

Several points are worth further discussions. First, other agency problems can give
rise to above equity market and collateral constraints, e.g., Gertler and Kiyotaki (2010);
Gertler and Karadi (2011). Second, the equity market constraint is widely studied in
the corporate finance literature (e.g., Myers, 2000; Lambrecht and Myers, 2008, 2012).
It essentially implies that shareholders cannot freely move funds in and out of firms.
Third, our analytically tractable formulation of capital market imperfections captures the
fact that external funds available to a firm are limited and costly. Fourth, one specific
interpretation of inter-firm borrowing and lending is the existence of a competitive rental
market in which firms can rent capital from each other (e.g., Jorgenson, 1963; Hall and
Jorgenson, 1969; Buera and Shin, 2013; Rampini and Viswanathan, 2013; Moll, 2014).
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Managers’ Problem. Similar to Moll (2014), our timeline assumption ensures that the
idiosyncratic productivity zi,t is locally deterministic when managers make decisions at t
for the production cycle [t, t + dt). Specifically, the manager of firm i makes leasing (ãi,s)
and production (ui,t, `i,t, xi,j,s) decisions for all s ≥ t to maximize the present value Ji,t of
his own rents

Ji,t = max
ãi,s,ui,s,`i,s,xi,j,s

Et

[∫ ∞

t

Λs

Λt
τai,sds

]
, (18)

subject to the equity market constraint (16), the collateral constraint (17), and the intertem-
poral budget constraint (3) with dIi,t given by

dIi,t = yi,tdt−
∫ Nt

0
pj,txi,j,tdjdt− wt`i,tdt− ui,tki,td∆t − r f ,t âi,tdt− di,tdt, (19)

where the SDF Λt evolves according to

dΛt

Λt
= −r f ,tdt− ηtdWt. (20)

The variable ηt is the endogenous market price of risk. Because the technology, budget
constraint, and collateral constraint are all linear in ai,t, the value Ji,t is also linear in ai,t

with the following form:
Ji,t ≡ Jt(ai,t, zi,t) = ξt(zi,t)ai,t, (21)

where ξi,t ≡ ξt(zi,t) captures the marginal value of capital to the manager, which depends
on the firm’s idiosyncratic productivity zi,t and the aggregate state of the economy. The
variable ξi,t evolves as follows:

dξi,t

ξi,t
= µξ,t(zi,t)dt + σξ,t(zi,t)dWt + σw,t(zi,t)dWi,t, (22)

where µξ,t(zi,t), σξ,t(zi,t), and σw,t(zi,t) are endogenously determined in equilibrium.
Exploiting the homogeneity of Ji,t in capital ai,t, we obtain the manager’s optimal

decisions, summarized in Lemma 1.

Lemma 1. Factor demands and profits are linear in capital, and there is a productivity cutoff zt
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for being active:

ut(z) =

{
1, z ≥ zt

0 z < zt
, kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
(23)

`t(a, z) =
[
(1− α)(1− ε)

wt

] 1
α
(

ε

pt

) ε
α(1−ε)

zut(z)kt(a, z), (24)

xj,t(a, z) =
(

pj,t

pt

) 1
ν−1

xt(a, z), (25)

where pt is the price index and xt(a, z) is the demand for the composite of intermediate goods,

pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

, (26)

xt(a, z) =
(

ε

pt

) 1−(1−α)(1−ε)
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

zut(z)kt(a, z). (27)

The productivity cutoff zt is determined by:

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt). (28)

where κt is

κt = α(1− ε)

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

. (29)

At any point in time t, only firms whose productivity is greater than zt produce, and
these firms will rent the maximal amount ãi,t = λai,t allowed by the collateral constraint.
Equations (25) to (27) are standard results of CES aggregation. The productivity cutoff zt

is determined by equation (28), where the marginal production return, ztκt, is equal to
the marginal cost of leased capital, r f ,t + δk + σk

(
σξ,t(zt)− ηt

)
, which includes the locally

deterministic user cost of capital and the term σk
(
σξ,t(zt)− ηt

)
that reflects the firm’s

exposure to aggregate risks.
Using Lemma 1, equation (19) can be simplified as

dIi,t

ai,t
=(1 + λ)

(
κtzi,tdt− d∆t − r f ,tdt

)
1zi,t≥zt + (r f ,t − ρ)dt. (30)

As in Moll (2014), the drift in capital is proportional to the firm’s capital ai,t. This is a
direct consequence of the constant payout ratio (16) and the constant-returns-to-scale
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production technology (1) for a fixed Nt. The linear savings policy ensures that ai,t ≥ 0
for all t.

2.5 Equilibrium and Aggregation

The dividend intensity Dt is given by

Dt = ρAt +
∫ Nt

j=0
πj,tdj− St, (31)

where At is the aggregate capital held by firms in the final goods sector, given by

At =
∫ ∞

0

∫ ∞

0
aϕt(a, z)dadz. (32)

In equation (31), the first term ρAt captures the dividend of the final goods sector. The
second term

∫ Nt
j=0 πj,tdj captures the profits from the intermediate goods sector and the

third term St captures the expenditure on R&D. The aggregate capital Kt in the economy
is

Kt =
∫ ∞

0

∫ ∞

0
kt(a, z)ϕt(a, z)dadz. (33)

Definition 2.1 (Competitive Equilibrium). At any point in time t, the competitive equilibrium
of the economy consists of prices wt, r f ,t, and

{
pj,t
}Nt

j=0, and corresponding quantities, such that

(i) firms in the final goods sector maximize (18) by choosing âi,t, ui,t, `i,t, and xi,j,t, subject to
(16), (17), and (19), given equilibrium prices;

(ii) intermediate goods producers maximize (6) by choosing pj,t for j ∈ [0, Nt];

(iii) the equilibrium R&D expenses St are determined by equation (10);

(iv) The SDF Λt is given by equation (15) and the risk-free rate r f ,t is determined by

r f ,t = −
1
dt

Et

[
dΛt

Λt

]
; (34)

(v) the labor market-clearing condition determines wt:

Lt =
∫ ∞

zt

∫ ∞

0
`t(a, z)ϕt(a, z)dadz; (35)
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(vi) the leased capital market-clearing condition determines households’ bond holdings Bt:

Bt =
∫ ∞

0

∫ ∞

0
ãt(a, z)ϕt(a, z)dadz. (36)

The aggregate capital is the sum of capital in the final goods sector and households’ bonds

Kt = At + Bt. (37)

Finally, the resource constraint is automatically satisfied because of Walras’s law (see Appendix
A.4).

Because managers’ problem is linear in capital ai,t (see equation (64)), it is not necessary
to track the marginal distribution of capital conditional on each productivity type z.5 We
thus follow Moll (2014) and introduce the capital share ωt(z) to fully characterize the
distribution of firms in the final goods sector:

ωt(z) ≡
1
At

∫ ∞

0
aϕt(a, z)da. (38)

Intuitively, the capital share ωt(z) plays the role of a density, and it captures the share of
firms’ capital held by each productivity type z. We define the analogue of the correspond-
ing cumulative distribution function (CDF) as

Ωt(z) ≡
∫ z

0
ωt(z′)dz′. (39)

To ensure that the equilibrium growth is well behaved, as in standard growth models,
we need output Yt given by equation (40) to be homogenous of degree one in the
accumulating factors Nt and Kt, i.e., (1−ν)ε

ν(1−ε)
+ α = 1 as in Kung and Schmid (2015). For

the rest of the paper, we assume this parameter restriction.

Proposition 2. At any point in time t ≥ 0, given the capital share ωt(z), the equilibrium
aggregate output is

Yt = (εν)
ε

1−ε ZtN1−α
t Kα

t L1−α
t , (40)

where Zt is the productivity of the final goods sector, given by

Zt =

[∫ ∞
zt

zωt(z)dz

1−Ωt(zt)

]α

. (41)

5In fact, similar to the model of Moll (2014), the marginal distribution of capital is not stationary due to
the constant-returns-to-scale production technology.
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The equilibrium Kt/At ratio is determined by the productivity cutoff zt in equation (28):

Kt/At = (1 + λ) [1−Ωt(zt)] . (42)

Factor prices are

pj,t =1/ν and pt = N
ν−1

ν
t /ν, (43)

wt =(1− α)(1− ε)Yt/Lt, (44)

where κt in equation (29) is simplified to κt = α(1− ε)Z−
1
α

t Yt/Kt. The aggregate profits of the
intermediate goods sector and R&D intensity are

Ntπt = (1− ν)εYt, (45)

St = (χvt)
1
h Nt. (46)

Equation (40) shows that the economy’s aggregate TFP is (εν)
ε

1−ε ZtN1−α
t , which

depends on the knowledge stock Nt and the productivity Zt of the final goods sector.
The productivity Zt reflects the degree of misallocation in the economy and determines
the growth rate of Nt, and hence the growth rate of aggregate TFP. In equation (41), Zt

is firms’ average productivity z weighted by their capital share ωt(z). Similar to Moll
(2014), the equilibrium productivity cutoff zt is determined directly by the CDF of capital
share (see equation (42)) due to the bang-bang solution in equation (23). The value of Zt

is higher when more productive firms are associated with more capital, which reflects a
more efficient capital allocation in the presence of collateral constraints.

Equation (43) is a direct consequence of homogeneous intermediate goods producers
facing the a constant elasticity of substitution, 1/(1− ν). Equation (44) implies that
the equilibrium wage is competitive, given by the labor share, (1− α)(1− ε), in the
production function times the aggregate per-capita output, Yt/Lt.

In the intermediate goods sector, equation (45) implies that the aggregate profit flow,
Ntπt, equals the share of intermediate goods in the production function, εYt, multiplied
by their profitability, as captured by the inverse of the elasticity of substitution (1− ν)
among differentiated intermediate goods. In equation (46), innovators’ R&D intensity
increases with the value of blueprints vt with an elasticity of 1/h.
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2.6 Misallocation as a State Variable

The capital share ωt(z) is crucial in determining the final goods sector’s productivity Zt

in equation (41), whose value reflects the misallocation of capital. As in the model of
Moll (2014) and many other general-equilibrium models with heterogeneous agents, the
capital share is an infinite-dimensional object that evolves endogenously.

In this section, we propose an analytical approximation of ωt(z). In Online Appendix
B.1, we apply the Berry-Esseen bound (Tikhomirov, 1980; Bentkus, Gotze and Tikho-
moirov, 1997) to show that in the stationary equilibrium without aggregate shocks, the
distribution of capital ai,t across firms in the final goods sector approximately follows a
log-normal distribution at any point in time t. This motivates the following lemma.

Lemma 2. The log capital, ãi,t = ln(ai,t), across firms in the final goods sector approximately
follows a normal distribution.

According to equation (5), log individual productivity z̃i,t = ln zi,t also follows a
normal distribution, z̃i,t ∼ N(0, σ2/2), in the stationary equilibrium. Thus, if at some
initial point in time t0, z̃i,t0 and ãi,t0 follow a joint normal distribution, then the distribution
of z̃i,t and ãi,t will be joint normal for all t ≥ t0. This joint-normality allows us to derive a
closed-form representation for the capital share ωt(z) as follows.

Lemma 3. For any t ≥ 0, the capital share ωt(z) can be approximated by the PDF of a log-normal
distribution,

ωt(z) =
1

zσ
√

π
exp

[
− (ln z + Mtσ

2/2)2

σ2

]
, (47)

where Mt ≡ −Cov(z̃i,t, ãi,t)/var(z̃i,t) = −2Cov(z̃i,t, ãi,t)/σ2.

Lemma 3 implies that under our approximation, the endogenous variable Mt ≡
−Cov(z̃i,t, ãi,t)/var(z̃i,t) is a sufficient statistic that characterizes ωt(z). Intuitively, Mt

captures the covariance between z̃i,t and ãi,t at t across all firms in the final goods sector. A
higher Mt indicates that more productive firms are associated with less capital, reflecting
a higher degree of capital misallocation.

The main purpose of our analytical approximation proposed in Lemmas 2 and 3 is to
highlight the economy’s misallocation as a crucial state variable Mt. This allows us to
achieve two results. First, it yields a simple closed-form characterization for the evolution
of the economy (see Section 2.7), allowing us to clearly illustrate the key model mechanism
that links the persistence of idiosyncratic productivity to that of misallocation. Second, it
directly implies an intuitive and theoretically-justified empirical measure of misallocation
(see Section 4.1), based on which we provide a set of empirical evidence consistent with
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our model predictions. Our idea of using tractable analytical approximations to deliver
key model mechanisms is in spirit similar to several important works in the finance
literature. For example, Campbell and Shiller (1988) propose log-linear present value
approximations to clearly decompose the impact of discount-rate news and cash-flow
news on stock valuations. Gabaix (2007, 2012) develops the class of “linearity-generating”
processes to achieve analytical convenience when revisiting a set of macro-finance puzzles.

In terms of the accuracy of our approximation, we show in Online Appendix B.2
that our approximation can yield solutions similar to the numerical solutions based
on directly tracking the evolution of ωt(z) in both steady states and transitions when
the persistence of idiosyncratic productivity, i.e., θ, is within the range of the empirical
estimates of Asker, Collard-Wexler and Loecker (2014) based on U.S. census data. More
generally, our log-normal approximation is justified by the detailed numerical analysis
of Winberry (2018). In a more general model with aggregate shocks, Winberry (2018)
approximates the distribution with a flexible parametric family, which nests our log-
normal approximation as a special case. Winberry (2018) solves the model using an
efficient perturbation method and shows that for standard calibrations, approximations
based on the log-normal approximation can already yield stationary distributions and
aggregates during transitions that are virtually indistinguishable from higher degree
approximations (see Figures 2 and 3 of Winberry, 2018). Importantly, in the stochastic
equilibrium, the implied dynamics of aggregate variables, such as consumption, output,
investment, SDF, and the autocorrelations in the covariance between log capital and
log productivity, based on the log-normal approximation are very close to the results
based on higher degree approximations (see Tables 3 and 4 of Winberry, 2018). Given
that these variables crucially determine the quantitative asset pricing implications of
our model, Winberry (2018)’s findings lend strong support for our analytically tractable
approximation.

Proposition 3. Under our approximation specified in Lemma 2, the productivity Zt of the final
goods sector is

Zt =

[
(1 + λ)

At

Kt
exp

(
−σ2

2
Mt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

. (48)

where Φ(·) represents the CDF of a standard normal variable.

Equation (48) clearly shows that the final goods sector’s productivity Zt strictly de-
creases with the misallocation variable Mt. Thus, a lower Mt leads to higher Zt and
aggregate output Yt.6 Moreover, a lower misallocation Mt implies that more produc-

6One of the main insights of Hsieh and Klenow (2009) is that the misallocation of resources lowers
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tive firms have more capital, leading to a higher productivity cutoff zt. Under our
approximation, equation (41) has a closed-form representation:

zt = exp
[
−σ2

2
Mt −Φ−1

(
1

1 + λ

Kt

At

)
σ√
2

]
. (49)

Thus, a lower misallocation Mt leads to a higher productivity Zt but fewer firms in the
final goods sector will be active.7

2.7 Evolution of the Economy

The economy’s transitional dynamics are characterized by the evolution of aggregate
capital At in the final goods sector, knowledge stock Nt, and misallocation Mt. The
aggregate capital Kt and bond holdings of households Bt are not state variables because
they are determined by equations (42) and (37), given At. We summarize the evolution of
the economy in the proposition below.

Proposition 4. For any t ≥ 0, the economy is fully characterized by the evolution of aggregate
capital At in the final goods sector, knowledge stock Nt, and misallocation Mt, as follows

dAt

At
=α(1− ε)

Yt

At
dt−

[
(δkdt + σkdWt)

Kt

At
+ δadt− σadWt

]
−
(

Kt

At
− 1
)

r f ,tdt− ρdt, (50)

dNt

Nt
=χ (χvt)

1−h
h dt− δbdt, (51)

dMt =− θMtdt− Cov(z̃i,t, dãi,t)

var(z̃i,t)
, (52)

where is Cov(z̃i,t, dãi,t) given by equation (134) in Online Appendix.

In equation (50), the evolution of aggregate capital At is given by the capital share,
α(1− ε), in the production function times the aggregate output to capital ratio, Yt/Atdt,

aggregate TFP. Proposition 3 shows that, in our model, the endogenous variable Mt determines the degree
of misallocation as it determines productivity Zt, and thus TFP. Our analytical formula (48) for Zt is an
approximation for the exact formula (41), which can be linked to the industry-level TFP formula derived by
Hsieh and Klenow (2009). The key difference is that in our model, firms in the final goods sector produce
homogeneous goods. But firms in the model of Hsieh and Klenow (2009) produce differentiated goods. In
Online Appendix C, we show that by driving the elasticity of substitution among goods to infinity and
wedges to zero, the industry-level TFP formula of Hsieh and Klenow (2009) coincides with our formula
(41).

7Banerjee and Moll (2010) show that there could be misallocation on the extensive margin because some
productive firms may not run businesses. Our model, like Moll (2014), does not have misallocation on the
extensive margin because production does not require upfront fixed costs (i.e., technology is convex).
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minus capital depreciation, (δkdt + σkdWt)Kt/At + δadt − σadWt, minus interests on
households’ loans, (Kt/At − 1)r f ,tdt, and dividend payout, ρdt.

In equation (51), the accumulation of knowledge stock Nt increases with the value
of blueprints vt because a higher vt motivates innovators to increase R&D intensity St

(equation (46)). Importantly, the misallocation Mt determines the economy’s endogenous
growth rate over [t, t + dt). This is because vt equals the present value of profit flow πt

(equation (8)), and thus vt is higher when πt is higher. A lower misallocation Mt increases
the final goods sector’s productivity Zt (equation (48)), leading to a higher aggregate
output Yt (equation (40)) and thus a higher profit flow πt (equation (45)), and ultimately,
a higher growth rate of the economy. By linking the final goods sector and the innovation
sector through the endogenous productivity Zt, the allocation of capital ai,t among firms
of different productivity zi,t plays a crucial role in determining economic growth.

Equation (52) shows that the evolution of Mt depends on two terms. The first
term −θMtdt reflects time-varying productivity zi,t evolving according to equation (5).
Intuitively, a higher θ implies a less persistent idiosyncratic productivity zi,t, which
pushes the misallocation Mt = −Cov(z̃i,t, ãi,t)/var(z̃i,t) towards zero. In Section 3, we
show that the parameter θ crucially determines the economy’s long-run consumption risk
by affecting the persistence of Mt. The second term Cov(z̃i,t, dãi,t)/var(z̃i,t) captures the
impact of capital accumulation, dãi,t, evolving according to equation (3). Intuitively, a
higher Cov(z̃i,t, dãi,t) implies that more productive firms also accumulate their capital at
a higher rate, which reduces misallocation Mt.

Importantly, the variable Cov(z̃i,t, dãi,t) negatively depends on the aggregate shock
dWt (see equation (134) in Online Appendix). Intuitively, a positive shock (dWt > 0)
increases the depreciation rate of capital ki,t, which reduces the capital accumulation of
firms with productivity zi,t above the cutoff zt, without affecting those with productivity
below the cutoff due to the optimal solution (23). As a result, a positive shock leads to a
lower Cov(z̃i,t, dãi,t), increasing the misallocation Mt. Aggregate shocks can have positive
or negative effects on the aggregate capital At in the final goods sector, depending on
the sign of σkKt/At − σa. Under our calibration, σkKt/At − σa has a small, positive value,
indicating that a positive shock reduces At.

Define Et = Nt/At as the aggregate knowledge stock to capital ratio. Because the
economy is homogeneous of degree one in At, the three state variables (At, Nt, Mt) can
be reduced to two state variables (Et, Mt).
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2.8 Balanced Growth Path

We characterize the economy’s balanced growth path in the absence of aggregate shocks
(i.e., dWt ≡ 0).

Proposition 5. There is a balanced growth path in which Et, Mt, and Zt are constant, and
aggregate capital At, knowledge stock Nt, output Yt, and consumption Ct grow at a constant rate.

In the presence of aggregate shocks, the economy’s growth rate is time varying,
depending on its misallocation Mt. A positive shock (dWt > 0) increases Mt, leading
to a lower productivity Zt through equation (48). Per our discussion in Section 2.7,
a higher Zt increases aggregate output Yt, and thus the value of blueprints vt. This
motivates innovators to increase their R&D spending, leading to a higher growth rate of
knowledge stock Nt. Because the economy’s misallocation Mt is persistent (see equation
(52)), i.i.d. shocks that affect misallocation Mt can generate persistent effects on both
aggregate output and consumption growth. Thus, the economy’s misallocation Mt not
only determines contemporaneous growth but also predicts future growth of output and
consumption.

3 Quantitative Analysis

In this section, we evaluate whether misallocation can quantitatively generate low-
frequency movements in aggregate consumption growth (Bansal and Yaron, 2004). Section
3.1 calibrates the model. Section 3.2 presents the quantitative results. Our model can
generate moments on consumption growth and asset prices consistent with the data.
In the model, misallocation significantly predicts future consumption growth and R&D
intensity. Section 3.3 illustrates the important role of the persistence of idiosyncratic
productivity in determining the persistence of aggregate consumption growth through
the slow-moving misallocation variable. Section 3.4 studies the welfare implications of
misallocation.

3.1 Calibration

Panel A of Table 1 presents the externally calibrated parameters. Following the standard
practice, we set the capital share in the production technology at α = 0.33 and the yearly
capital depreciation rate at δk = δa = 0.04. We set the share of intermediate inputs at
ε = 0.5 according to the estimates of Jones (2011, 2013). The inverse markup is set at
ν = 0.6 to guarantee the existence of a balanced growth path. Recursive preferences are
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Table 1: Parameter calibration and targeted moments.

Panel A: Externally determined parameters

Parameter Symbol Value Parameter Symbol Value

Capital share α 0.33 Capital depreciation rate δk, δa 0.04

Share of intermediate inputs ε 0.5 Risk aversion γ 10

EIS ψ 1.85 Inverse markup ν 0.6

Dividend payout rate ρ 0.025 Knowledge depreciation rate δb 0.25

1− R&D elasticity h 0.17 Vol. of idio. productivity σ 1.39

Collateral constraint λ 1 Persistence of idio. productivity θ 0.1625

Panel B: Internally calibrated parameters and targeted moments

Parameter Symbol Value Moments Data Model

Subjective discount rate δ 0.015 Real risk-free rate (%) 1.21 1.22

R&D productivity χ 3.35 Consumption growth rate (%) 1.76 1.77

Capital depreciation shock σk 0.13 Consumption growth vol. (%) 1.48 1.49

Liquidity shock σa 0.12 σ(∆ ln Ct)/σ(∆ ln Yt) 0.61 0.56

commonly used in recent works in asset pricing, we set the risk aversion at γ = 10 and
the EIS at ψ = 1.85 as in Kung and Schmid (2015). The dividend payout rate is set at
ρ = 0.025. We set h = 0.17 so that the elasticity of new blueprints with respect to R&D is
0.83, following the calibration of Kung and Schmid (2015). We set the depreciation rate of
knowledge stock at δb = 0.25, which is within the range of the standard values used by
the Bureau of Labor Statistics (BLS) in the R&D stock calculations. We set the volatility
of idiosyncratic productivity at σ = 1.39 according to the calibration of Moll (2014). We
set the persistence of idiosyncratic productivity at θ = 0.1625, which implies that firms’
idiosyncratic productivity has a yearly autocorrelation of exp(−θ) = 0.85, consistent
with the estimate of Asker, Collard-Wexler and Loecker (2014) based on U.S. census
data as well as the calibration in the macroeconomics literature (e.g., Khan and Thomas,
2008; Moll, 2014; Winberry, 2018, 2021). We set the collateral constraint parameter at
λ = 1, which is within the range of the calibration in the macroeconomics literature (e.g.,
Buera and Shin, 2013; Jermann and Quadrini, 2012; Midrigan and Xu, 2014; Moll, 2014;
Dabla-Norris et al., 2021).

The remaining parameters are calibrated by matching the relevant moments sum-
marized in Panel B of Table 1. When constructing the model moments, we simulate a
sample for 160 years with an 80-year burn-in period. We then compute the model-implied
moments as we do for the data in each simulation. For each moment, the table reports the
median of the distribution across 10,000 independent simulations. The discount rate is set
at δ = 0.015 to generate a real risk-free rate of about 1.22%. The R&D productivity is a
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Table 2: Untargeted moments in data and model.

Moments Data Model

median 2.5% 97.5%

Panel A: Consumption moments

AC1(∆ ln Ct) (%) 0.41 0.41 0.19 0.59

AC2(∆ ln Ct) (%) 0.02 0.15 −0.12 0.40

AC4(∆ ln Ct) (%) −0.07 0.04 −0.22 0.31

AC6(∆ ln Ct) (%) −0.03 0.00 −0.27 0.27

VR2(∆ ln Ct) (%) 1.77 1.41 1.18 1.60

VR4(∆ ln Ct) (%) 1.93 1.79 1.18 2.41

VR6(∆ ln Ct) (%) 2.21 1.95 1.08 3.03

Panel B: Other macroeconomic moments

σ(∆ ln TFPt)/σ(∆ ln Yt) (%) 1.22 0.97 0.93 0.99

σ(∆ ln St)/σ(∆ ln Yt) (%) 2.10 1.49 1.40 1.56

AC1(∆ ln TFPt) (%) 0.09 0.27 0.06 0.46

AC1(∆ ln St) (%) 0.21 0.17 −0.04 0.36

AC1(∆ ln Yt) (%) 0.37 0.31 0.09 0.51

AC1(Mt) (%) 0.65 0.82 0.68 0.91

Panel C: Asset pricing moments

Sharpe ratio of consumption claim 0.40 0.41 0.18 0.65

σr f (%) 0.60 0.48 0.36 0.63

Note: The variable ∆ ln Xt = ln Xt+1− ln Xt represents difference in ln Xt between year t and year t− 1. We
use yearly consumption data for the postwar period from 1948 to 2017. Moments in panel A are computed
following Beeler and Campbell (2012), who focus on the sample period from 1948 to 2008 (our moments
replicate theirs when we focus on the same sample period). ACk(∆ ln Ct) refers to the autocorrelation of
consumption growth with a k-year lag. VRk(∆ ln Ct) of consumption growth refers to the variance ratio
of consumption growth with a k-year horizon. Moments in panel B are obtained from Kung and Schmid
(2015). When constructing the model moments, we simulate a sample for 160 years with an 80-year burn-in
period. We then compute the model-implied moments as we do for the data in each simulation. We report
the median, 2.5%, and 97.5% of each moment’s distribution across 10,000 independent simulations.

scaling parameter and is set at χ = 3.35 to generate an average consumption growth rate
of about 1.77%. We calibrate σk = 0.13 so that the model-implied volatility of consumption
growth is about 1.49%. We calibrate σa = 0.12 so the ratio of the volatility of consumption
growth and output growth is 0.56.

3.2 Quantitative Results

Table 2 presents untargeted moments as a validation test of the model. Panel A shows
that the persistence of consumption growth implied by the model is very consistent with
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Table 3: Model-implied relationship between misallocation, R&D, and growth.

Panel A: R&D intensity

t (current year) t + 1 (next year)

β −0.099 −0.078

[−0.007] [−0.010]

R-squared 0.745 0.464

Panel B: Consumption growth

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.061 −0.101 −0.126 −0.140 −0.147

[−0.012] [−0.021] [−0.028] [−0.034] [−0.040]

R-squared 0.247 0.243 0.217 0.189 0.160

Panel C: Output growth

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

β −0.038 −0.035 −0.027 −0.016 −0.003

[−0.026] [−0.042] [−0.054] [−0.063] [−0.071]

R-squared 0.031 0.016 0.014 0.017 0.018

Note: We simulate a sample for 160 years with an 80-year burn-in period. In panel A, we regress the R&D
intensity in year t and t + 1 on misallocation Mt. In panels B and C, we regress the cumulative growth of
consumption and output from year t to t + τ (τ = 1, 2, ..., 5) on Mt, respectively. We report the median of
each statistic across 10,000 independent simulations.

that in the data even though these moments are not directly targeted in our calibration.
In Section 3.3, we show that the parameter θ governing the persistence of idiosyncratic
productivity zi,t plays a major role in determining the persistence of consumption growth.

Panel B of Table 2 shows that several key macroeconomic moments implied by the
model are also roughly aligned with the data. These moments include the volatil-
ity of TFP growth (σ(∆ ln TFPt)) and R&D expenditures growth (σ(∆ ln St)) relative
to the volatility of output growth (σ(∆ ln Yt)). The yearly autocorrelations in TFP
growth (AC1(∆ ln TFPt)), R&D expenditures growth (AC1(∆ ln St)), output growth
(AC1(∆ ln Yt)), and our misallocation measure (AC1(Mt)).

Panel C of Table 2 shows that our model implies a smooth risk-free rate and a high
Sharpe ratio for the consumption claim, consistent with both the data and the long-run
risk model of Bansal and Yaron (2004). Thus, the endogenous low-frequency movements
in aggregate consumption growth implied by our model have reasonable implications for
asset prices.

Table 3 studies the relationship between misallocation, R&D and growth in our
model. Panel A shows that the misallocation Mt in year t is negatively correlated with
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contemporaneous R&D intensity (i.e., St/At). The misallocation Mt also negatively
predicts the R&D intensity in the next year, t + 1.

Panel B of Table 3 shows that misallocation Mt significantly negatively predicts future
consumption growth over time horizons of one year to five years. The coefficients are
more negative for longer horizons as consumption growth is persistent. Misallocation
can predict future consumption growth in our model because it is the persistence in
misallocation that generates persistent consumption growth through endogenous R&D.
Because our model only has one aggregate shock, the conditional consumption growth is
strongly correlated with conditional misallocation growth. As a result, both the t-statistic
and the R2 are larger for the regression coefficients over shorter horizons.

Panel C of Table 3 shows that misallocation Mt also negatively predicts future output
growth. However, the regression coefficients are not statistically significant as output
growth implied by the model is less persistent compared to consumption growth (see
Table 2).

3.3 Inspection of Model Mechanisms

We now illustrate how the persistence of idiosyncratic productivity and other key param-
eters determine the persistence of aggregate consumption growth and the quantitative
implications of the model.

Impulse Response Functions. Consider a stationary economy in the balanced growth
path. At t = 0, there is a one-time unexpected shock (i.e., dWt < 0 over [0, dt)) that
reduces the misallocation Mt by σk. The blue solid line in each panel of Figure 1 plots the
transitional dynamics in our baseline calibration.

The blue solid line in panel A illustrates the evolution of the misallocation Mt after
the shock, which follows equation (52). In the absence of aggregate shocks, aggregate
consumption would be C0 exp(gt), growing at a constant rate g = 1.77% for all t ≥
0. We take out the trend effect in Ct by focusing on excess consumption, defined
by Ct/(C0 exp(gt)). The blue solid line in panel B shows that excess consumption
Ct/(C0 exp(gt)) stays at one before the shock, and it immediately jumps to about 1.025
when the shock hits at t = 0, and continues to increase until reaching the balanced
growth path. Even though the shock is transitory, the economy converges to a steady
state with permanently higher consumption due to the endogenous accumulation of
capital At and knowledge stock Nt. Panel C illustrates a similar idea by plotting the
conditional consumption growth, defined by dCt/(Ctdt). The blue solid line shows that
the conditional consumption growth increases dramatically to about 3% when the shock
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Note: Consider an unexpected shock that reduces misallocation Mt by σk at t = 0. Panels A, B, and C plot
the transitional dynamics of misallocation Mt, excess consumption Ct/(C0egt), and consumption growth
dCt/(Ctdt) for three economies with different θ. For each economy, we calibrate the parameter χ so that
the consumption growth rate in the balanced growth path is the same as our baseline calibration. All other
parameters are set according to our calibration in Table 1. Panels D, E, and F plot the transitional dynamics
of final goods sector’s productivity Zt, R&D-capital ratio St/At, and knowledge-capital ratio Nt/At for the
baseline case with exp(−θ) = 0.85.

Figure 1: Transitional dynamics after a one-time shock in misallocation Mt.

hits at t = 0. This is because the reduction in misallocation Mt immediately increases the
productivity Zt of the final goods sector (panel D). A higher Zt increases the profits of
innovators, motivating them to spend more on R&D (panel E), which consequently leads
to a higher growth rate of the economy. Crucially, it is the persistence in misallocation Mt

(panel A) that results in persistent excess consumption growth relative to the balanced
growth path (panels B and C). Panel F plots the evolution of the knowledge-capital ratio
Et = Nt/At, which has hump-shaped dynamics because we only introduce a one-time
shock in Mt at t = 0.

In panels A, B and C, we further compare our baseline calibration with two economies
of higher persistence of idiosyncratic productivity zi,t. The yearly autocorrelation in
ln zi,t is corr(ln zi,t, ln zi,t+1) = exp(−θ) according to equation (5). Panel A shows that the
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economy with a higher persistence of zi,t is associated with lower misallocation in the
balanced growth path (i.e., the red dash-dotted line is below the black dashed line, which
is below the blue solid line). This follows the insight of Buera and Shin (2011) and Moll
(2014): More productive firms accumulate more capital relative to less productive firms
over time. Thus, the covariance between capital and productivity across firms increases
with the persistence of productivity, resulting in less misallocation in equilibrium.

We find that the convergence speed of Mt decreases with the persistence of idiosyn-
cratic productivity (see equation 52). Specifically, we compute the half-life of transitions,
defined as the time required for Mt to recover to half of its value in the balanced
growth path after the shock. The half life of Mt is 2.72, 3.74, and 6.20 years for the
blue solid (exp(−θ) = 0.85), black dashed (exp(−θ) = 0.9), and red dash-dotted lines
(exp(−θ) = 0.95), respectively, indicating that Mt is more persistent when θ is smaller.
Comparing the three curves in panels B and C, it is clear that the economy with a higher
persistence of zi,t has more persistent consumption growth after the shock in Mt.

The key insight of our model is that the persistence of the level of idiosyncratic produc-
tivity, zi,t, plays an important role in determining the persistence of the growth rate of
aggregate consumption, dCt/(Ctdt). The connection between the persistence of these two
variables is delivered through the endogenously persistent misallocation Mt. Our insight
is related to that of Moll (2014), who shows that transitions to steady states are slow when
idiosyncratic productivity shocks are persistent. Different from Moll (2014), we show that
the persistence of idiosyncratic productivity not only determines the transition speed of
the level of output and TFP, but also the growth rate of aggregate consumption in a model
with endogenous growth. This allows our theory to generate endogenous low-frequency
movements in aggregate consumption growth through persistent misallocation, thereby
rationalizing asset prices in the capital market. Crucially, by linking the persistence in
idiosyncratic productivity with the persistence in aggregate consumption growth, our
model provides a way to estimate long-run risk in aggregate consumption growth based
on granular firm-level data, which helps address the issues of weak identification in the
long-run risk literature (Chen, Dou and Kogan, 2019; Cheng, Dou and Liao, 2020).

Inspection of Key Parameters. Table 4 shows how the main variables of our model
respond to changes in key parameters.

Column (1) presents the baseline calibration. In column (2), we consider a less persis-
tent idiosyncratic productivity by increasing θ from 0.1625 to 0.22, which corresponds
to a yearly autocorrelation of 0.80 in ln zi,t. Compared with the baseline calibration,
the average misallocation Mt increases from −0.51 to −0.42 because productive firms
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Table 4: Inspection of key parameters.

(1) (2) (3) (4) (5) (6)

Baseline θ = 0.22 λ = 1.2 χ = 3.45 σk = 0.12 σa = 0.13

E[Mt] (%) −0.51 −0.42 −0.52 −0.52 −0.50 −0.50

E[Zt] (%) 1.63 1.59 1.70 1.64 1.63 1.63

E[∆ ln Ct] (%) 1.77 0.96 2.46 2.48 1.64 1.66

σ(∆ ln Ct) (%) 1.49 1.43 1.57 1.50 1.22 1.26

σ(∆ ln Ct)/σ(∆ ln Yt) 0.56 0.54 0.57 0.56 0.41 0.39

AC1(∆ ln Ct) (%) 0.41 0.35 0.40 0.40 0.43 0.43

AC1(∆ ln TFPt) (%) 0.27 0.22 0.27 0.27 0.25 0.25

AC1(∆ ln Yt) (%) 0.31 0.26 0.31 0.32 0.29 0.28

AC1(Mt) (%) 0.82 0.78 0.82 0.82 0.83 0.83

Sharpe ratio 0.41 0.30 0.44 0.41 0.32 0.33

Note: When constructing the model moments, we simulate a sample for 160 years with an 80-year burn-in
period. We then compute the model-implied moments as we do for the data in each simulation. We report
the median of each moment’s distribution across 10,000 independent simulations.

are more likely to be unproductive when productivity is more transitory, weakening
the self-financing channel through capital accumulation. As a result, the final-goods
sector’s productivity Zt decreases from 1.63 to 1.59. The average consumption growth
rate decreases to 0.96% and the volatility of consumption growth decreases to 1.43%.
A lower persistence of idiosyncratic productivity reduces the yearly autocorrelation in
consumption to 0.35; moreover, aggregate TFP, output, and misallocation all become less
persistent. Because of the decrease in consumption persistence, the Sharpe ratio declines
from 0.41 in the baseline calibration to 0.30 in column (2).

In column (3), we consider a more relaxed collateral constraint by increasing λ from 1
to 1.2. The average misallocation Mt stays roughly unchnaged at −0.52 compared to the
baseline calibration. This is because the equilibrium misallocation is mainly determined by
firms’ differential speed of capital accumulation across different productivity zi,t (i.e., the
term Cov(z̃i,t, dãi,t) in equation (52)). A change in λ does not affect this difference much
because a higher λ scales up the revenue of both high-productivity and low-productivity
firms. However, a higher λ does lead to a higher productivity Zt in the final-goods sector
because λ directly increases Zt in equation (48), reflecting the instantaneous reallocation
of capital through the capital leasing market. The higher Zt increases the average
consumption growth rate to 2.46% and the volatility of consumption growth to 1.57%,
without affecting the persistence of consumption growth and other macro variables. The
Sharpe ratio is increased to 0.44.

In column (4), we consider a higher productivity of R&D by increasing χ from 3.35 to
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3.45. Compared with our baseline calibration in column (1), column (4) shows that all
the variables remain roughly unchanged, except for a higher consumption growth rate
(2.48% vs. 1.77% in the baseline). The higher growth rate is not due to a better allocation
of capital among firms because Zt is roughly unchanged. As discussed in Section 3.1, the
parameter χ can be thought of as a pure scaling factor that determines the equilibrium
growth rate.

In columns (5), we consider a smaller magnitude of capital depreciation shocks by
reducing σk from 0.13 to 0.12. Compared with our baseline calibration in column (2),
the volatility of consumption growth decreases from 1.49% to 1.22% and the ratio of
consumption growth volatility to output growth volatility decreases to 0.41. The Sharpe
ratio decreases from 0.41 to 0.32 as the SDF becomes less volatile. The other variables
reported in Table 2 remain roughly unchanged compared with the baseline calibration.

Finally, in column (6), we consider a larger magnitude of liquidity shocks by increasing
σa from 0.12 to 0.13. Compared with our baseline calibration in column (1), the volatility
of consumption growth decreases from 1.49% to 1.26%, because liquidity shocks do not
affect the evolution of misallocation (equation (52)), and are negatively correlated with
capital depreciation shocks (50). As a result, the ratio of consumption growth volatility to
output growth volatility decreases significantly to 0.39. The Sharpe ratio decreases to 0.33
as the SDF becomes less volatile.

3.4 Welfare Implications of Misallocation

In our model, fluctuations in aggregate quantities reflect changes in misallocation, im-
plying that the cost of misallocation can be evaluated by measuring the cost of business
cycles. We provide some suggestive quantitative evaluation through the lens of the model.

Because aggregate consumption includes both transitory fluctuations and permanent
fluctuations, it is important to define business cycles to comprise only transitory fluc-
tuations (Alvarez and Jermann, 2004, 2005). Kung and Schmid (2015) emphasize the
importance of distinguishing business cycles from growth cycles (i.e., the low-frequency
movements in consumption) in endogenous stochastic growth models with long-run
consumption risk.

Following the approach of Alvarez and Jermann (2004), we use the model-generated
consumption time series to calculate the potential benefits of eliminating business cycles
(i.e., transitory fluctuations). Specifically, business cycles are defined as fluctuations that
last up to eight years as in Burns and Mitchell (1946) and Alvarez and Jermann (2004). In
our simulated consumption time series, we use a one-sided moving average to represent
a low-pass filter that lets pass frequencies that correspond to cycles of eight years or more
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(Baxter and King, 1999).8 The estimated moving average coefficients allow us to calculate
the costs of business cycles based on the model-implied consumption risk premium
(Alvarez and Jermann, 2004, equations (4) and (6)).

Our model implies that eliminating business cycles leads to a welfare gain of 0.58%,
with a 95% confidence interval of [0.23%, 1.10%]. The magnitude of our estimate is
similar to that of Alvarez and Jermann (2004), which is directly obtained from asset price
data. We also estimate the potential benefits of eliminating all consumption uncertainty.
Specifically, we calibrate the parameter χ in an economy without aggregate shocks to
achieve the same growth rate of aggregate consumption as our baseline calibration.
Because the representative household’s utility (12) is homogeneous of degree one in
aggregate consumption, the consumption-equivalent welfare gain of eliminating all
consumption uncertainty is equal to the percentage increase in the value of utility U0,
when the agent moves from the baseline economy to the economy without aggregate
shocks at t = 0. Our model implies that eliminating all consumption uncertainty leads to
a welfare gain of as large as 245.25%, with a 95% confidence interval of [222.71%, 268.72%],
which is also in the ballpark range estimated by Alvarez and Jermann (2004). Per
the insight of Alvarez and Jermann (2004, 2005), our model implies a large gain from
the elimination of all consumption uncertainty because consumption and the pricing
kernel have large permanent components. This further confirms our main results that
misallocation endogenously drives low-frequency movements in aggregate consumption
growth in our model.

4 Empirical Results

In this section, we conduct empirical analyses to test our model’s main predictions. In
Section 4.1, we construct a measure of misallocation implied by our model. We show
that misallocation in the U.S. data becomes more severe during economic recessions and
financial crises. In Section 4.2, we provide evidence for the effects of misallocation on R&D
intensity and economic growth. We thus identify shocks to the misallocation as a proxy
for shocks to the low-frequency components of consumption growth and the pricing
kernel. Lastly, in Section 4.3, we study the cross-sectional asset pricing implications of
misallocation.

8The frequency response function is one for frequencies lower than eight years and zero otherwise.
Section III of Alvarez and Jermann (2004) provides details on estimating the moving average coefficients.
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Note: The red solid line plots the time series of our misallocation measure MisAlloct (corresponding to
the left y-axis). The pink bars represent the change in MisAlloct (corresponding to the right y-axis). The
shaded areas represent recessions or severe financial crises.

Figure 2: Time series plot of our misallocation measure MisAlloct.

4.1 Misallocation Measure

Motivated by our theory, we construct a measure of misallocation based on the U.S.
Compustat data:

MisAlloct = the HP filtered time series of − βAlloc
t . (53)

The variable βAlloc
t captures the cross-sectional alignment between log productivity and log

assets at time t, obtained from the following panel regression using firm-year observations
from 1965 to 2016:

ai,t = αt + βAlloc
t zi,t + εi,t, (54)

where the independent variable ai,t ≡ T−1 ∑T
τ=1 ln(ppenti,t+1−τ) is the average log net

property, plant and equipment of firm i in the past T years, i.e., from year t+ 1− T to year
t.9 The dependent variable zi,t ≡ T−1 ∑T

τ=1 ln(salesi,t+1−τ/production_capitali,t+1−τ) is a

9All our empirical results are robust if we use tangible net worth to construct ai,t in the data. A firm’s
tangible net worth is constructed using its current assets plus net physical plant, property, and equipment
plus other assets minus total liabilities. As emphasized in a seminal work by Chava and Roberts (2008),
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Table 5: Misallocation and R&D intensity.

(1) (2) (3) (4) (5) (6)

Sample period 1959 - 2016 1965 - 2016 1970 - 2016

t t + 1 t t + 1 t t + 1

β −0.076 −0.080 −0.076 −0.079 −0.073 −0.071

[−0.033] [−0.032] [−0.032] [−0.031] [−0.029] [−0.029]

R-squared 0.089 0.102 0.102 0.116 0.121 0.117

measure of the average log productivity of firm i in the past T years, where productivity
in year t is constructed as the ratio of firm i’s sales to its assets for production in year t.
We construct the capital for production by adding the rented capital to the net property,
plant and equipment of firm i. Following the standard accounting practice and the
literature (e.g., Rauh and Sufi, 2011; Rampini and Viswanathan, 2013), we capitalize the
rental expenses to obtain an approximation of the amount of rented capital. Specifically,
we capitalize the rental expense by a factor 10 and capped by a fraction, 0.25, of the net
property, plant and equipment.10 To construct ai,t and zi,t, we set T = 3. All empirical
results are robust for alternative choices of T.

Figure 2 plots the time series of our misallocation measure MisAlloct. Sharp spikes
in MisAlloct are observed during periods of economic downturns, including economic
recessions and three finance crises: the savings and loan (S&L) crisis from January 1986
to December 1987, the Mexican peso crisis from January 1994 to December 1995, and
the European sovereign debt crisis from September 2008 to December 2012. The stylized
pattern shown by Figure 2 is consistent with our model’s prediction that a large increase
in misallocation generally represents a period of time with macroeconomic recession and
financial turmoil.

4.2 Growth Forecasts

Time-varying growth prospects in consumption are at the core of the long-run risk
literature following Bansal and Yaron (2004). However, the empirical evidence regarding
this channel is still controversial. Few instruments have been shown to successfully
predict consumption growth over long horizons. Our model implies that the degree

lenders commonly use a firm’s tangible net worth to assess the borrower’s ability to support and pay back
loans (i.e., borrowing capacity). Naturally, tangible net worth, as a borrowing capacity measure, is widely
reflected in loan covenants (e.g., DeAngelo, DeAngelo and Wruck, 2002; Roberts and Sufi, 2009; Sufi, 2009;
Prilmeier, 2017).

10All the empirical results are robust if we use a factor 5, 6, or 8; moreover, the results are also robust if
we use a fraction 0, 0.5, 1, or 2.
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Table 6: Consumption growth forecasts.

(1) (2) (3) (4) (5)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Panel A: Sample period is 1965 - 2016

β −0.035 −0.060 −0.100 −0.154 −0.208

[−0.024] [−0.040] [−0.052] [−0.060] [−0.066]

R-squared 0.040 0.042 0.069 0.120 0.173

Panel B: Sample period is 1970 - 2016

β −0.033 −0.059 −0.100 −0.156 −0.205

[−0.024] [−0.041] [−0.052] [−0.059] [−0.064]

R-squared 0.039 0.044 0.076 0.139 0.190

of misallocation predicts R&D intensity, which determines consumption growth. Thus,
misallocation measures could be economically meaningful predictors of R&D intensity
and aggregate growth rates. In this subsection, we present empirical evidence supporting
this prediction.

In Table 5, we regress the R&D intensity in the current year (t) and the next year (t + 1)
on the misallocation measure MisAlloct. Columns (1), (3), and (5) show that a higher
misallocation is associated with a contemporaneous decline in R&D intensity, which is
robust across different sample periods. Columns (2), (4), and (6) of Table 5 further show
that a higher misallocation predicts a further decline in R&D intensity in the next year.

Table 6 presents the results of projecting future consumption growth over horizons
of one to five years on the misallocation measure MisAlloct. The slope coefficients are
negative and decreasing with horizons, and these results are robust across different
sample periods. Specifically, the slope coefficients are statistically significant in columns
(3) to (5) of panel B, which correspond to consumption growth over horizons of three
to five years. The R2 monotonically increases from 0.076 to 0.190 when time horizon
increases from t→ t + 3 to t→ t + 5.

Table 7 presents the results of projecting future output growth over horizons of one
to five years on the misallocation measure MisAlloct. The slope coefficients are negative
and decreasing with horizons, and become statistically significant in columns (4) and
(5) with an R2 of 0.078 and 0.132, respectively. These results are robust across different
sample periods.

Taken together, we find evidence that the aggregate growth rates of consumption and
output can be predicted by our misallocation measure over long horizons. Our regression
results in Tables 6 and 7 lend empirical support to the notion of misallocation-driven low-
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Table 7: Output growth forecasts.

(1) (2) (3) (4) (5)

t → t + 1 t → t + 2 t → t + 3 t → t + 4 t → t + 5

Panel A. Sample period is 1965 - 2016

β −0.034 −0.062 −0.092 −0.153 −0.216

[−0.040] [−0.062] [−0.075] [−0.082] [−0.083]

R-squared 0.015 0.020 0.029 0.067 0.123

Panel B. Sample period is 1970 - 2016

β −0.031 −0.061 −0.098 −0.159 −0.214

[−0.040] [−0.064] [−0.077] [−0.083] [−0.084]

R-squared 0.013 0.020 0.035 0.078 0.132

frequency variation in consumption and output growth, consistent with the implications
of the model. Our model thus helps rationalize and identify misallocation as an economic
source of long-run risks in the data.

4.3 Asset Pricing Implications

In this subsection, we study the cross-sectional asset pricing implications of misallocation
to lend further support to our model. Specifically, we study whether our misallocation
measure MisAlloct is a factor that is significantly priced in the cross section of asset
returns for standard test portfolios. The test portfolios include 25 size-sorted and book-to-
market-sorted portfolios, 10 momentum-sorted portfolios, and 6 maturity-sorted Treasury
bond portfolios. The results are presented in Table 8 and visualized in Figures 3 and
4, which plot the realized mean excess returns of test portfolios against their predicted
mean excess returns based on various factor models.

To elaborate, panel A of Figure 3 presents the predicted mean excess returns based
on the CAPM as a benchmark, which fails to price our test portfolios (R2 = 0.30). Panel
B presents the results based on a two-factor model with market returns and MisAlloct.
Panel C presents the results of the Fama-French three-factor model. Comparing panels
B and C, our two-factor model with market returns and MisAlloct produces a cross-
sectional fit (R2 = 0.53) comparable with the Fama-French three-factor model (R2 = 0.62).
Notably, the two-factor model better explains the expected returns of the 10 momentum-
sorted portfolios than the Fama-French three-factor model, which is known to have a poor
explanatory power for momentum-sorted portfolio returns. Once we include MisAlloct

in the Fama-French three-factor model in panel D, not surprisingly, the improvement
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Note: We plot the realized mean excess returns of 35 equity portfolios (25 size-sorted and book-to-market-
sorted portfolios and 10 momentum-sorted portfolios) and 6 maturity-sorted Treasury bond portfolios
against the mean excess returns predicted by various linear factor asset pricing models. We use yearly data
from 1961 to 2016.

Figure 3: Realized versus predicted mean excess returns with MisAlloct.

mainly lies in the explanatory power for momentum portfolio returns (R2 = 0.68).
Our theory suggests that the main channel through which long-run expected economic

growth, especially consumption growth, affects asset returns is the persistent variation
in misallocation. Thus, we expect long-run expected consumption growth to have little
explanatory power for portfolio returns if the misallocation measure MisAlloct is already
included as a factor. Following Parker and Julliard (2005), we use accumulated future
consumption growth to approximate long-run expected consumption growth. Panel
A of Figure 4 shows that the two-factor model with market returns and accumulated
future consumption growth can fit the returns of our test portfolios well (R2 = 0.55). In
panel B, we augment this two-factor model with MisAlloct to construct a three-factor
model. We find that the relation between realized mean excess returns and predicted
mean excess returns across our test portfolios stays almost unchanged, implying that
expected consumption growth and misallocation are indeed similarly priced in the cross
section of asset returns. However, the coefficient on accumulated future consumption
growth becomes statistically insignificant after including MisAlloct as a factor, which
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Note: We plot the realized mean excess returns of 35 equity portfolios (25 size-sorted and book-to-market-
sorted portfolios and 10 momentum-sorted portfolios) and 6 maturity-sorted Treasury bond portfolios
against the mean excess returns predicted by various linear factor asset pricing models. We use yearly data
from 1961 to 2016.

Figure 4: Realized versus predicted mean excess returns with MisAlloct and accumulated
future consumption growth.

has a statistically significant coefficient (see column (6) of Table 8). Similar patterns are
shown in panels C and D when we include MisAlloct in the factor model that contains
Fama-French three factors and accumulated future consumption growth.

5 Conclusion

This paper provides a misallocation-based explanation for long-run consumption risk, a
mechanism that quantitatively justifies many asset pricing moments. We develop a novel
analytically tractable growth model with heterogenous firms, in which misallocation
emerges as an endogenous state variable.

The model delineates the tight link between an economy’s misallocation and its
growth prospects. We show that short-run i.i.d. shocks that impact the economy’s
misallocation can have persistent effect on the economy’s aggregate consumption growth,
thereby generating endogenous long-run consumption risk. In the data, we construct
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Table 8: Portfolio returns and model fit.

(1) (2) (3) (4) (5) (6) (7) (8)

MKT MKT, M FF FF, M MKT, C MKT, M, C FF, C FF, M, C

Panel A: Prices of risk

Intercept 3.34 2.96 2.67 2.25 2.42 2.83 2.31 2.18

t-FM [3.60] [3.20] [3.99] [3.55] [2.59] [3.05] [3.51] [3.37]

t-Shanken [3.47] [1.46] [3.65] [1.60] [1.72] [1.50] [2.57] [1.55]

Mkt 4.92 3.82 3.66 4.86 4.63 3.88 4.59 5.05

t-FM [1.73] [1.36] [1.42] [1.91] [1.64] [1.38] [1.80] [1.99]

t-Shanken [1.28] [0.58] [0.98] [0.79] [0.94] [0.62] [1.08] [0.83]

MisAlloc −0.12 −0.12 −0.10 −0.11

t-FM [−4.66] [−5.74] [−4.52] [−5.34]

t-Shanken [−2.10] [−2.54] [−2.20] [−2.41]

SMB 3.01 2.40 2.61 2.55

t-FM [1.54] [1.23] [1.35] [1.31]

t-Shanken [1.05] [0.52] [0.80] [0.55]

HML 4.36 4.05 4.40 4.18

t-FM [2.16] [2.00] [2.18] [2.07]

t-Shanken [1.46] [0.84] [1.30] [0.87]

CG 0.02 0.01 0.02 0.01

t-FM [3.32] [0.67] [4.06] [1.07]

t-Shanken [2.13] [0.32] [2.71] [0.48]

Panel B: Test diagnostics

Total MAPE 2.76 1.82 1.90 1.70 2.03 1.78 1.95 1.71

Size and B/M 25 2.77 1.77 1.30 1.68 1.50 1.68 1.39 1.68

Momentum 10 3.30 2.62 3.72 2.30 3.59 2.34 3.69 2.33

Bond 6 1.85 1.26 1.36 0.74 1.61 1.28 1.43 0.78

Adjusted R-squared 0.30 0.53 0.62 0.68 0.55 0.60 0.63 0.69

a misallocation measure implied by the model and find evidence that the aggregate
growth rates of consumption and output can be predicted by misallocation over long
horizons. Moreover, as an asset pricing factor, misallocation explains the cross-sectional
asset returns of standard test portfolios. By connecting the persistence in idiosyncratic
productivity with the persistence in aggregate consumption growth, our model implies
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that long-run risk in aggregate consumption can be estimated based on granular firm-level
data, which can potentially help address the issues of weak identification in the long-run
risk literature (Chen, Dou and Kogan, 2019; Cheng, Dou and Liao, 2020).
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Online Appendix

A Proofs

A.1 Proof of Proposition 1

To ensure that shareholders do not intervene, the manager pays a dividend flow of ζai,tdt
to shareholders over [t, t + dt) where ζ is to be determined. Thus, firm i’s total dividend
payment is (τ + ζ)ai,tdt over [t, t + dt), which includes the rents paid to the manager and
the dividends paid to shareholders. If the manager follows this payout policy consistently,
shareholders will be willing to defer intervention continuously. Payouts and rents evolve
in lockstep.

We now derive the relation between ζ, ρ, and τ. Related to our discussion in Online
Appendix A.2, the manager’s value is proportional to the firm’s capital, given by ξi,tai,t,
where ξi,t depends on the firm’s idiosyncratic productivity zi,t and the aggregate state of
the economy. If shareholders do not intervene, they receive a dividend payment that is a
fraction ζ/τ of the manager’s private benefits. Thus, shareholders’ value is (ζ/τ)ξi,tai,t.
If shareholders intervene, the firm’s value will drop to (1− τ/ρ)ξi,tai,t due to the loss of
capital. But, because shareholders now are also managers, they will have the claim to
all dividends, which generate a value of (1 + ζ/τ)(1− τ/ρ)ξi,tai,t. Thus, the manager
chooses the intensity ζ of dividends to shareholders such that shareholders are indifferent
about having an intervention or not:

ζ

τ
ξi,tai,t = (1 + ζ/τ)(1− τ/ρ)ξi,tai,t, (55)

which implies ζ = (1− τ/ρ)τ/[1− (1− τ/ρ)]. The firm’s total dividend payout ratio is

τ + ζ = ρ. (56)

A.2 Proof of Lemma 1

Given capital ki,t = ai,t + âi,t, utilization intensity ui,t, and intermediate composite xi,t, firm
i solves static maximization problems when choosing `i,t and xi,j,t. Taking the first-order
condition with respect to `i,t in the right-hand side of equation (19), we obtain the optimal
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labor demand:

`i,t =

[
wt

(1− α)(1− ε)(zi,tui,tki,t)α(1−ε)xε
i,t

] 1
(1−α)(1−ε)−1

. (57)

Substituting equations (2), (16), (19) and (57) into (3):

dai,t =−
∫ Nt

0
pj,txi,j,tdjdt− ui,tki,t (δkdt + σkdWt) + ai,t(−δadt + σadWt)− r f ,t âi,tdt− ρai,tdt

+ [1− (1− α)(1− ε)]

[
wt

(1− α)(1− ε)

] (1−α)(1−ε)
(1−α)(1−ε)−1

(zi,tui,tki,t)
α(1−ε)

1−(1−α)(1−ε) x
ε

1−(1−α)(1−ε)

i,t dt.

(58)

Taking the first-order condition with respect to xi,j,t in the right-hand side of equation
(58), we derive firm i’s optimal demand for intermediate goods j ∈ [0, Nt]:

xi,j,t =

 ε

pj,t

[
wt

(1− α)(1− ε)

] (1−α)(1−ε)
(1−α)(1−ε)−1

(zi,tui,tki,t)
α(1−ε)

1−(1−α)(1−ε) x
1−ν− α(1−ε)

1−(1−α)(1−ε)

i,t

 1
1−ν

. (59)

Substituting into equation (4), we derive xi,t:

xi,t =

(
ε

pt

) 1−(1−α)(1−ε)
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

zi,tui,tki,t, (60)

where the price index pt is given by

pt =

(∫ Nt

0
p

ν
ν−1
j,t dj

) ν−1
ν

. (61)

Substituting equation (60) into (57), we obtain (24). Substituting equation (60) into

(59), we obtain (25). Substituting equation (60) and
∫ Nt

0
pj,txi,j,tdj = ptxi,t into (58), we

obtain

dai,t =− ui,tki,t (δkdt + σkdWt) + ai,t(−δadt + σadWt)− r f ,t âi,tdt− ρai,tdt

+ α(1− ε)

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

zi,tui,tki,tdt. (62)

Thus, the manager’s problem (18) can be simplified and characterized recursively as
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follows:
0 = max

âi,t,ui,t
τai,tdt + Et

[
dΛt

Λt
Ji,t + dJi,t +

dΛt

Λt
dJi,t

]
. (63)

subject to the budget constraint (62). Because the technology, budget constraint, and
collateral constraint are all linear in ai,t, the value Ji,t is also linear in ai,t with the following
form:

Ji,t ≡ Jt(ai,t, zi,t) = ξt(zi,t)ai,t, (64)

where ξi,t ≡ ξt(zi,t) captures the marginal value of capital to the manager, which depends
on the firm’s idiosyncratic productivity zi,t and the aggregate state of the economy.
Substituting equations (20) and (64) into (63), we obtain

0 = max
âi,t,ui,t

τai,tdt + Et
[
(−r f ,tdt− ηtdWt)ξi,tai,t

]
+ Et

[
(1− r f ,tdt− ηtdWt)(dξi,tai,t + ξi,tdai,t + dξi,tdai,t)

]
. (65)

The variable ξi,t evolves as follows:

dξi,t

ξi,t
= µξ,i,tdt + σξ,i,tdWt + σw,i,tdWi,t, (66)

where µξ,i,t ≡ µξ,t(zi,t), σξ,i,t ≡ σξ,t(zi,t), and σw,i,t ≡ σw,t(zi,t) are endogenously deter-
mined in equilibrium. Using equations (62) and (66), and the properties that (dWt)2 = dt,
Et[dWi,t] = Et[dWt] = Et[dWtdWi,t] = 0, we obtain the following equations after omitting
higher-order terms:

Et
[
(−r f ,tdt− ηtdWt)ξi,tai,t

]
=− r f ,tai,tξi,tdt, (67)

Et
[
(1− r f ,tdt− ηtdWt)dξi,tai,t

]
=µξ,i,tai,tξi,tdt− ηtσξ,i,tai,tξi,tdt. (68)

Et
[
(1− r f ,tdt− ηtdWt)(ξi,tdai,t + dξi,tdai,t)

]
= Et

[
(1 + σξ,i,tdWt − ηtdWt)ξi,tdai,t

]
=[σk(ηt − σξ,i,t)− δk]ui,tki,tξi,tdt− σa(ηt − σξ,i,t)ξi,tai,tdt− r f ,t âi,tξi,tdt− (ρ + δa)ai,tξi,tdt

+ α(1− ε)

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

zi,tui,tki,tξi,tdt. (69)
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Substituting equations (67), (68), (69) into (65), we obtain

0 = max
âi,t,ui,t

τai,tdt− r f ,tai,tξi,tdt + µξ,i,tai,tξi,tdt− ηtσξ,i,tai,tξi,tdt

[σk(ηt − σξ,i,t)− δk]ui,tki,tξi,tdt− σa(ηt − σξ,i,t)ξi,tai,tdt− r f ,t âi,tξi,tdt− (ρ + δa)ai,tξi,tdt

+ α(1− ε)

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

zi,tui,tki,tξi,tdt. (70)

Using ki,t = ai,t + âi,t, we can see that maximizing equation (70) is essentially the same
as maximizing

0 = max
âi,t,ui,t

[σk(ηt − σξ,i,t)− δk]ui,t âi,tξi,tdt− r f ,t âi,tξi,tdt

+ α(1− ε)

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

zi,tui,t âi,tξi,tdt. (71)

Because a positive shock (dWt > 0) increases misallocation through higher capital
depreciation of productive firms, we have ηt < 0 in equilibrium. Moreover, because ξi,t is
not affected by the manager’s choice of âi,t. The objective function (71) is linear in both
âi,t and ui,t. Thus, conditional on ui,t = 1, we can characterize the productivity cutoff zt

that makes the manager indifferent about leasing capital as follows:

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt)., (72)

where

κt = α(1− ε)

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α

. (73)

Because r f ,t > 0 in equilibrium, it is clear that firms will optimally choose ui,t = 1 for
zi,t ≥ zt.11 The optimal leasing amount follows a bang-bang solution:

ãt(a, z) =

{
λa, z ≥ zt

−a z < zt
, (74)

which leads to the bang-bang solution in capital:

kt(a, z) =

{
(1 + λ)a, z ≥ zt

0 z < zt
. (75)

11In other words, the bang-bang cutoff productivity for ui,t is lower than the cutoff productivity for âi,t
when r f ,t > 0.
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The optimal capacity utilization intensity is given by

ut(z) =

{
1, z ≥ zt

0 z < zt
. (76)

In fact, any utilization intensity ui,t ∈ [0, 1] is optimal when zi,t < zt because ki,t = 0. We
set its value to zero without loss of generality.

A.3 Proof of Proposition 2

Define the productivity Zt of the final goods sector as

Zt =

[
1
Kt

∫ ∞

zt

∫ ∞

0
zut(z)kt(a, z)ϕt(a, z)dkdz

]α

, (77)

Using equations (23), (32), (38), and kt(a, z) = a + ãt(a, z), Zt can be written as

Zt =

[
(1 + λ)

At

Kt

∫ ∞

zt

zωt(z)dz
]α

. (78)

Substituting equation (75) into the capital market-clearing condition (33), we obtain

(1 + λ)
∫ ∞

zt

∫ ∞

0
aϕt(a, z)dkdz = Kt. (79)

Given the definition of capital share (38), the left-hand side of equation (79) can be
simplified as

(1 + λ)
∫ ∞

zt

∫ ∞

0
aϕt(a, z)dkdz = (1 + λ)At

∫ ∞

zt

ωt(z)dz = (1 + λ)At(1−Ωt(zt)). (80)

Thus, we have the following equation

(1 + λ)(1−Ωt(zt)) =
Kt

At
, (81)

which determines the equilibrium Kt/At. Substituting equation (81) into (78), we obtain
(41).

Substituting equation (7) into (6), we obtain

πj,t = max
pj,t

(pj,t − 1)
(

pj,t

pt

) 1
ν−1

Xt, (82)
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Taking the first-order condition, we obtain

pj,t =
1
ν

for all j. (83)

Substituting equation (83) into the price index (26), we obtain

pt = N
ν−1

ν
t pj,t = N

ν−1
ν

t /ν. (84)

Substituting equation (24) into (35) and using (77), we obtain

Lt =

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1
α
∫ ∞

zt

∫ ∞

0
zut(z)kt(a, z)ϕt(a, z)dadz

=

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1
α

Z
1
α
t Kt. (85)

Substituting equation (84) into (85), we derive the equilibrium wage wt:

wt = (1− α)(1− ε)(εν)
ε

1−ε N
(1−ν)ε
ν(1−ε)

t Zt(Kt/Lt)
α. (86)

By definition, the aggregate output Yt is

Yt =
∫ ∞

zt

∫ ∞

0

[
(zut(z)kt(a, z))α(`t(a, z))1−α

]1−ε
xt(a, z)ε ϕt(a, z)dadz. (87)

Substituting equations (24) and (27) into (87), we obtain

Yt =

(
ε

pt

) ε
α(1−ε)

[
(1− α)(1− ε)

wt

] 1−α
α
∫ ∞

zt

∫ ∞

0
zut(z)kt(a, z)ϕt(a, z)dadz. (88)

Further substituting equations (77), (84) and (86) into the above equation, we obtain

Yt =(εν)
ε

1−ε ZtN
(1−ν)ε
ν(1−ε)

t Kα
t L1−α

t

=(εν)
ε

1−ε ZtN1−α
t Kα

t L1−α
t . (89)

Using equation (89), the equilibrium wage wt in (86) can be simplified as

wt = (1− α)(1− ε)
Yt

Lt
. (90)
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Equation (29) can be simplified by substituting equations (84) and (90) into (29):

κt =α(1− ε)(εν)
ε

1−ε Z
α−1

α
t N

(1−ν)ε
ν(1−ε)

t Kα−1
t L1−α

t

=α(1− ε)Z−
1
α

t
Yt

Kt
. (91)

Substituting equations (27), (83) and (84) into (82) and using (77), we obtain

πt =
1− ν

ν
(εν)

1−(1−α)(1−ε)
α(1−ε) Z

1
α
t N

1−ν
ν

[
1−(1−α)(1−ε)

α(1−ε)
− 1

1−ν

]
t

[
(1− α)(1− ε)

wt

] 1−α
α

Kt. (92)

Further, substituting equation (86) into the above equation and using (89), we obtain

πt =
1− ν

ν
(εv)

1
1−ε ZtN

ε−ν
ν(1−ε)

t Kα
t L1−α

t

=(1− ν)ε
Yt

Nt
. (93)

Thus, we have ∫ Nt

j=0
πtdj = Ntπt = (1− ν)εYt. (94)

Substituting equation (10) into (11), we obtain

St = (χvt)
1
h Nt. (95)

A.4 Resource Constraint

By definition, the aggregate output Ytdt is

Ytdt =
∫ ∞

zt

∫ ∞

0
yt(a, z)dtϕt(a, z)dadz =

∫ ∞

0

∫ ∞

0
yt(a, z)dtϕt(a, z)dadz. (96)

Substituting equations (3) and (19) into the above equation and using (16), (23), (32), (33),
(35), and (36), we obtain

Ytdt =dAt + (δadt− σadWt)At + wtLtdt + (δkdt + σkdWt)Kt + r f ,tBtdt + ρAtdt

+
∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
ϕt(a, z)dadz, (97)

where the last term is the revenue of the intermediate goods sector. Using equations (7),
(25) and the definition Xt ≡

∫
i∈I xi,tdi =

∫ ∞
0

∫ ∞
0 xt(a, z)ϕt(a, z)dadz, it can be simplified
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as follows∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
ϕt(a, z)dadz =

∫ Nt

0

(∫ ∞

0

∫ ∞

0
pj,txj,t(a, z)ϕt(a, z)dadz

)
djdt

=
∫ Nt

0
pj,tej,tdjdt

=
∫ Nt

0
πj,tdjdt +

∫ Nt

0
ej,tdjdt. (98)

Substituting equation (98) into (97), we obtain

Ytdt =dAt + (δadt− σadWt)At + wtLtdt + (δkdt + σkdWt)Kt + r f ,tBtdt + ρAtdt

+
∫ Nt

0
πj,tdjdt +

∫ Nt

0
ej,tdjdt, (99)

Substituting equations (14) and (31) into (99), we obtain the resource constraint

Ytdt =dAt + (δadt− σadWt)Atdt + (δkdt + σkdWt)Kt︸ ︷︷ ︸
investment in the final goods sector

+ Stdt +
∫ Nt

0
ej,tdjdt︸ ︷︷ ︸

R&D and intangible goods production

+Ctdt− dBt. (100)

Note that the resource constraint (100) holds by Walras’s law in equilibrium. This can
be proved by substituting equations (44) and (50) into (99), and using the condition below

∫ ∞

0

∫ ∞

0

(∫ Nt

0
pj,txj,t(a, z)djdt

)
ϕt(a, z)dkdz = εYtdt, (101)

which simply says that the cost of purchasing intangible goods is equal to a share ε of Yt

(the derivation is similar to equation (45)).

A.5 Proof of Lemma 3

Let ψt(ã, z̃) be the joint distribution of ã and z̃. Define Γt ≡ Cov(ãi,t, z̃i,t). Under Lemma
2, ψt(ã, z̃) is the PDF of a joint normal distribution, with the covariance between ã and z̃
being Γt.

The PDF ϕt(a, z) is related to ψt(ã, z̃) through the Jacobian matrix J, as follows:

ϕt(a, z) = |J|ψt(ã, z̃), (102)
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where J is defined by

J =

(
∂ã/∂a ∂ã/∂z
∂z̃/∂a ∂z̃/∂z

)
. (103)

Thus, we have

ϕt(a, z) =
1
az

ψt(ã, z̃). (104)

Using equation (104), the term
∫ ∞

0 aϕt(a, z)da in equation (38) can be written as

∫ ∞

0
aϕt(a, z)da =

∫ ∞

−∞

a
z

ψt(ã, z̃)dã. (105)

Let f (z̃) be the PDF of z̃, which follows a normal distribution, N(0, σ2/2), in the stationary
equilibrium. Thus, equation (105) can be written as

∫ ∞

0
aϕt(a, z)da =

∫ ∞

−∞

a
z

ψt(ã|z̃) f (z̃)dã = E [exp(ãi,t)|z̃]
f (z̃)

z
. (106)

Using equation (104), the variable At defined in (32) can be written as

At =
∫ ∞

−∞

∫ ∞

−∞
a

1
az

ψt(ã, z̃)azdãdz̃ = E [exp(ãi,t)] . (107)

Substituting equations (106) and (107) into (38), we obtain

ωt(z) =
E[exp(ãi,t)|z̃]
E[exp(ãi,t)]

f (z̃)
z

. (108)

Because ãi,t and z̃i,t follow a joint normal distribution with covariance Γt, we have

E[exp(ãi,t)|z̃] = exp
(

E[ãi,t|z̃] +
1
2

var(ãi,t|z̃)
)

, (109)

E[exp(ãi,t)] = exp
(

E[ãi,t] +
1
2

var(ãi,t)

)
, (110)

where

E(ãi,t|z̃) =E(ãi,t) + 2z̃Γt/σ2, (111)

var(ãi,t|z̃) =var(ãi,t)− 2Γ2
t /σ2. (112)
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Substituting equations (109) to (112) into (108), we obtain

ωt(z) =
f (z̃)

z
exp

(
2z̃Γt

σ2

)
exp

(
−Γ2

t
σ2

)
=

1
zσ
√

π
exp

(
− (ln z− Γt)2

σ2

)
. (113)

This formula turns out to be the same as equation (29) of Moll (2014). Substituting out
Γt = −Mtvar(z̃i,t), we obtain equation (47) in the main text.

A.6 Proof of Proposition 3

Define Γt ≡ Cov(ãi,t, z̃i,t) = −Mtvar(z̃i,t) = −Mtσ
2/2. Substituting equation (47) into

(42), we obtain the equation that determines the productivity cutoff zt under our approxi-
mation of ωt(z):

1
1 + λ

Kt

At
= 1−Ωt(zt) =

∫ ∞

z̃t

1
σ
√

π
exp

(
− (z̃− Γt)2

σ2

)
dz̃ = Φ

(
Γt − z̃t

σ/
√

2

)
. (114)

Rearranging the above equation, we obtain zt:

zt = exp
(

Γt −Φ−1
(

1
1 + λ

Kt

At

)
σ√
2

)
. (115)

The term
∫ ∞

zt
zωt(z)dz in equation (41) can be simplified using (47), as follows

∫ ∞

zt

zωt(z)dz =
∫ ∞

zt

z
1

zσ
√

π
exp

(
− (z̃− Γt)2

σ2

)
dz

=
∫ ∞

z̃t

1
σ
√

π
exp

(
− (z̃− Γt − σ2/2)2

σ2

)
exp

(
Γt +

σ2

4

)
dz̃

= exp
(

Γt +
σ2

4

)
Φ
(

Γt + σ2/2− z̃t

σ/
√

2

)
. (116)

Substituting equation (116) into (41), we obtain

Zt =

[
(1 + λ)

At

Kt
exp

(
Γt +

σ2

4

)
Φ
(

Γt + σ2/2− z̃t

σ/
√

2

)]α

. (117)

Further, substituting equation (115) into the above equation, we obtain

Zt =

[
(1 + λ)

At

Kt
exp

(
Γt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

. (118)
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Substituting out Γt = −Mtvar(z̃i,t) = −Mtσ
2/2, we obtain equation (48) in the main text.

A.7 Proof of Proposition 4

Equation (32) implies

At+dt − At =
∫ ∞

0

∫ ∞

0
dat(a, z)ϕt(a, z)dadz. (119)

Substituting equations (2), (3), and (30) into the above equation, we obtain

At+dt − At = (1 + λ)κt

∫ ∞

zt

∫ ∞

0
zadtϕt(a, z)dadz− (1 + λ)r f ,t

∫ ∞

zt

∫ ∞

0
adtϕt(a, z)dadz

− (1 + λ) (δkdt + σkdWt)
∫ ∞

zt

∫ ∞

0
aϕt(a, z)dadz + σa AtdWt + (r f ,t − ρ− δa)Atdt. (120)

Using equations (77), (79), and (91), the above equation can be simplified as

dAt = α(1− ε)Ytdt− (r f ,t + δk)Ktdt− (ρ + δa − r f ,t)Atdt + (σa At − σkKt)dWt. (121)

Substituting equations (11) and (46) into (9), we obtain

dNt

Nt
= χ (χvt)

1−h
h dt− δbdt. (122)

Define Γt ≡ Cov(ãi,t, z̃i,t) = −Mtvar(z̃i,t) = −Mtσ
2/2. Next, we derive the evolution

of Γt. By definition, Γt+dt ≡ Cov(ãi,t+dt, z̃i,t+dt). According to equation (5), we have

z̃i,t+dt = z̃i,t − θz̃i,tdt + σ
√

θdWi,t. (123)

Thus,

dΓt =Cov
(

ãi,t + dãi,t, z̃i,t − θz̃i,tdt + σ
√

θdWi,t

)
− Γt

=(1− θdt)Cov(ãi,t + dãi,t, z̃i,t)− Γt

=− θΓtdt + (1− θdt)Cov(z̃i,t, dãi,t). (124)

Omitting the higher-order term dtCov(z̃i,t, dãi,t), we obtain

dΓt = −θΓtdt + Cov(z̃i,t, dãi,t). (125)

Substituting out Γt = −Mtvar(z̃i,t) = −Mtσ
2/2, we obtain equation (52) in the main text.
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We now derive the expression for Cov(z̃i,t, dãi,t) under Lemma 2. Using Ito’s lemma

dãi,t =
1

ai,t
dai,t −

1
2a2

i,t
(dai,t)

2. (126)

Substituting equation (2), (3), and (30) into the above equation, we obtain the evolution of
ãi,t. In particular, for zi,t < zt, we have

dãi,t = (r f ,t − ρ− δa)dt + σadWt. (127)

For zi,t ≥ zt, we have

dãi,t = (1 + λ)
[
κtzi,tdt− (δkdt + σkdWt)− r f ,tdt

]
+ (r f ,t − ρ− δa)dt + σadWt. (128)

Because E[z̃i,t] = 0, we have

Cov(z̃i,t, dãi,t) = E[z̃i,tdãi,t]. (129)

Substituting equations (127) and (128) into (129), we obtain

Cov(z̃i,t, dãi,t) = (1 + λ)κtdt
∫ ∞

z̃t

z̃z f (z̃)dz̃− (1 + λ)
[
(r f ,t + δk)dt + σkdWt

] ∫ ∞

z̃t

z̃ f (z̃)dz̃,

(130)
where f (z̃) is the PDF of z̃, which follows a normal distribution, N(0, σ2/2), in the
stationary equilibrium.

Substituting out f (z̃), the term
∫ ∞

z̃t
z̃ f (z̃)dz̃ in equation (130) can be simplified as

follows:

∫ ∞

z̃t

z̃ f (z̃)dz̃ =
∫ ∞

z̃t

z̃
1

σ
√

π
exp

(
− z̃2

σ2

)
dz̃ = − σ

2
√

π

∫ ∞

z̃t

d exp
(
− z̃2

σ2

)
=

σ

2
√

π
exp

(
− z̃2

t
σ2

)
.

(131)
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The term
∫ ∞

z̃t
z̃z f (z̃)dz̃ in equation (130) becomes:

∫ ∞

z̃t

z̃z f (z̃)dz̃ =
1

σ
√

π

∫ ∞

z̃t

z̃ exp
(

z̃− z̃2

σ2

)
dz̃

=
1

σ
√

π
exp

(
σ2

4

) ∫ ∞

z̃t

z̃ exp

(
− 1

σ2

(
z̃− σ2

2

)2)
dz̃

=
1

σ
√

π
exp

(
σ2

4

)[∫ ∞

z̃t

(
z̃− σ2

2

)
exp

(
− 1

σ2

(
z̃− σ2

2

)2)
dz̃ +

∫ ∞

z̃t

σ2

2
exp

(
− 1

σ2

(
z̃− σ2

2

)2)
dz̃

]
(132)

Integrating both terms on the right-hand side of the above equation, we obtain∫ ∞

z̃t

z̃z f (z̃)dz̃

=− σ

2
√

π
exp

(
σ2

4

) ∫ ∞

z̃t

d exp

(
− 1

σ2

(
z̃− σ2

2

)2)
+

σ2

2
exp

(
σ2

4

)
Φ
(

σ2/2− z̃t

σ/
√

2

)

=
σ

2
exp

(
σ2

4

)[
1√
π

exp

(
− 1

σ2

(
z̃t −

σ2

2

)2)
+ σΦ

(
σ2/2− z̃t

σ/
√

2

)]
. (133)

Substituting equations (131) and (133) into (130), we obtain

Cov(z̃i,t, dãi,t) =
(1 + λ)σ2κt

2
exp

(
σ2

4

)
Φ
(

σ2/2− z̃t

σ/
√

2

)
dt

+
(1 + λ)σ

2
√

π
[(ztκt − r f ,t − δk)dt− σkdWt] exp

(
− z̃2

t
σ2

)
. (134)

A.8 Proof of Proposition 5

In the absence of aggregate shocks, the evolution of aggregate capital At (equation (50) in
the main text) becomes

dAt

At
= α(1− ε)

Yt

At
dt− (r f ,t + δk)

Kt

At
dt− (ρ + δa − r f ,t)dt. (135)

In the balanced growth path, aggregate output Yt, consumption Ct, capital At, and
knowledge stock Nt all grow at a constant rate g:

dYt

Yt
=

dCt

Ct
=

dAt

At
=

dNt

Nt
= gdt. (136)
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The variables Et, Kt/At, Yt/At, Γt, Zt, zt, κt, r f ,t, and vt are all constant. From now on,
we omit the subscript t for these variables. The risk-free rate r f is determined by the
representative agent’s first-order condition

dCt

Ct
= ψ(r f − δ)dt. (137)

Substituting equation (136) into (137), (51), and (135), we obtain

r f = g/ψ + δ, (138)

g = χ(χv)
1−h

h − δb, (139)

Yt

At
=

g + ρ + δa − r f + (r f + δk)Kt/At

α(1− ε)
. (140)

Dividing both sides of equation (40) by At and using Lt ≡ 1, we obtain

E =

[
1

(εν)
ε

1−ε Z

Yt

At

(
At

Kt

)α
] 1

1−α

, (141)

The flow profit π to each intermediate-goods producer is a constant and given by
equation (45),

π = (1− ν)ε
Yt

Nt
= (1− ν)ε

1
E

Yt

At
. (142)

Substituting equation (142) into (8), we obtain the value of blue prints v

v =
π

r f + δb
. (143)

Substituting equations (138), (141), and (142) into (143), we obtain v

v =
(1− ν)ε(εν)

ε
(1−ε)(1−α)

g/ψ + δ + δb

(
At

Yt

Kt

At

) α
1−α

Z
1

1−α . (144)

Define Γt ≡ Cov(ãi,t, z̃i,t) = −Mtvar(z̃i,t) = −Mtσ
2/2. The steady-state value of Z is

given by equation (48), as follows:

Z =

[
(1 + λ)

At

Kt
exp

(
Γ +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

, (145)

where the covariance Γ in the balanced growth path is obtained by setting dMt = 0 in
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equation (52):

Γ =
Cov(z̃i,t, dãi,t)

θdt
. (146)

In the balanced growth path, Cov(z̃i,t, dãi,t) given by equation (134) becomes

Cov(z̃i,t, dãi,t) =
(1 + λ)σ2κ

2
exp

(
σ2

4

)
Φ
(

σ2/2− z̃
σ/
√

2

)
dt

+
(1 + λ)σ

2
√

π
(zκ − r f − δk) exp

(
− z̃2

σ2

)
dt. (147)

Substituting equation (147) into (146):

Γ =
(1 + λ)σ2κ

2θ
exp

(
σ2

4

)
Φ
(

σ2/2− ln z
σ/
√

2

)
+

(1 + λ)σ

2θ
√

π
(zκ − r f − δk) exp

(
− z̃2

σ2

)
.

(148)
When solving above equations, we need to know Kt/At, z, and κ. They are given by

equation (115), (28, setting σk = 0), and (91), as follows

z = exp
(

Γ−Φ−1
(

1
1 + λ

Kt

At

)
σ√
2

)
, (149)

zκ = r f + δk, (150)

κ = α(1− ε)Z−
1
α

Yt

At

At

Kt
. (151)

B Discussions on the Analytical Approximation

In this appendix, we provide more discussions to justify the approximation of capital
share ωt(z) in Section 2.7 of the main text. In Section B.1, we show that the distribution
of ln ai,t can be approximated by a normal distribution, which justifies our Lemma 2 in
the main text. In Section B.2, we evaluate the accuracy of our analytical approximation.
We show that our approximation of ωt(z) can yield solutions similar to the numerical
solutions of various variables in both steady states and transitions for a large range of
parameter values.

B.1 Theoretical Property on the Approximation of ωt(z)

We prove Lemma 2, that is, the actual distribution of ãi,t ≡ ln ai,t is approximately normal.
In the absence of aggregate shocks, consider the balanced growth path with T ≈ ∞.
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Thus, all equilibrium prices are constant as shown in the proof of Proposition 5. The
productivity cutoff z determined by equation (72) becomes:

zκ = r f + δk. (152)

Rewriting equations (3) and (30) using (152) as follows:

dai,t

dt
= s(zi,t)ai,t, (153)

where
s(z) = (1 + λ)κ max {z− z, 0}+ r f − ρ− δa, (154)

and κ is given by equation (151). To better illustrate intuitions, we rewrite equation (153)
in discrete time with a time interval ∆t ≈ 0:

ai,t+∆t = [1 + s(zi,t)∆t] ai,t. (155)

We denote ai,n ≡ ai,n∆t and zi,n ≡ zi,n∆t for n = 1, 2, · · · . Then, it follows that

ai,n+1 = [1 + s(zi,n)∆t] ai,n. (156)

Define ξi,n ≡ ln(1 + s(zi,n)∆t)− ξ with ξ ≡ E [ln(1 + s(zi,n)∆t)], thus equation (156)
can be written as

ln ai,n+1 = ln ai,n + ξ̄ + ξi,n. (157)

For a large T > 0, suppose we set NT = T/∆t (without loss of generality, we assume
that NT is an integer), then equation (157) implies

ln ai,t = ln ai,1 + (NT − 1)ξ̄ +
NT−1

∑
n=1

ξi,n. (158)

In the balanced growth path, zi,n follows a stationary process evolving according to
equation (5). Thus, the process ξi,n is also stationary.

The evolution of ln zi,n can be directly obtained from equation (5), as follows:

ln zi,n+1 = e−θ∆t ln zi,n + σ∆εi,n+1, (159)
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where εi,n+1 is standard normal variable and

σ∆ = σ

√
1− e−2θ∆t

2
. (160)

According to Andrews (1983), the process zi,n is strong mixing with mixing coefficients
dominated by an exponentially declining sequence. Let

σ2
NT

= E
[
ξ2

i,1

]
+ 2

NT−1

∑
n=1

(
1− n

NT

)
E [ξi,1ξi,n] . (161)

Using the Berry-Esseen bound developed by Tikhomirov (1980) and Bentkus, Gotze
and Tikhomoirov (1997), we obtain

sup
x

∣∣∣∣∣P
{

NT−1

∑
n=1

ξi,n ≤ σNT x

}
−Φ(x)

∣∣∣∣∣ ≤ AN−1/2
T ln2 NT, (162)

where Φ(x) is the CDF of a standard normal random variable, and A is a constant that
depends on model parameters.

B.2 Assessment of Approximation Errors

Without our approximation of ωt(z), it is impossible to “exactly” solve the model numeri-
cally because ωt(z) is an infinite dimensional object and the model is written in general
equilibrium. Thus, to assess the accuracy of our analytical approximation of ωt(z), we
focus on the case without aggregate shocks (i.e., set dWt ≡ 0). Our assessment considers
the model’s approximation in both steady states and transitions, which presumably reflect
the goodness of fit of our approximation “in response to shocks.”

In particular, we compare our analytical approximation with the numerical solutions of
ωt(z) (obtained by solving ordinary differential equations, ODE, and partial differential
equations, PDE) in both steady states and transitions, respectively. We find that our
approximation of ωt(z) can closely capture the capital share in steady states as well as the
economy’s transitional dynamics when the process (5) of idiosyncratic productivity is not
very persistent. Specifically, our analytical approximation is very close to the numerical
solutions obtained by solving the whole distribution of ωt(z) using a standard ODE/PDE
method for empirically relevant values of the persistence of idiosyncratic productivity, i.e.,
exp(−θ) ≤ 0.95 according to the estimate of Asker, Collard-Wexler and Loecker (2014)
based on U.S. census data.

We start by evaluating the accuracy of the capital share, ω(z), in the steady state for
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Note: This figure compares the steady-state capital share ω(z) between our approximation and the ODE
solution under different yearly autocorrelation in idiosyncratic productivity zi,t. The ODE solution is
obtained by directly solving the steady-state ODE characterizing ω(z). The analytical approximation is
given by equation (47) of the main text. The blue solid line in each panel plots the ODE solution of ω(z)
and the black dashed line plots the solution of ω(z) under our approximation.

Figure OA.1: Capital shares and autocorrelation.

different values of the persistence parameter θ in equation (5). The yearly autocorrelation
in ln zi,t is given by corr(ln zi,t, ln zi,t+1) = exp(−θ). In Figure OA.1, the blue solid line
plots the ODE solution of ω(z). The black dashed line plots the approximated ω(z)
given by equation (47). Panels A, B, and C show that our approximation of ω(z) is
very close to the ODE solution when the yearly autocorrelation in productivity is below
0.95. Our approximation also implies that the capital share becomes more right skewed
when the persistence of idiosyncratic productivity increases, which is consistent with
the ODE solution. Panel D shows that the approximation becomes worse when the
yearly autocorrelation is 0.99. This is because when firms’ productivity becomes more
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Note: This figure compares the transitional dynamics of productivity, aggregate capital (normalized by
trend growth), and aggregate output (normalized by trend growth) between our approximation and the
PDE solutions under different yearly autocorrelation in idiosyncratic productivity zi,t. The PDE solutions
of transitional dynamics (blue solid lines) are obtained by directly solving the PDEs that characterize the
evolution of ωt(z) using the finite-difference algorithm. The approximated transitional dynamics (black
dashed lines) are solved based on the evolution of Mt (equation (52)). Initial capital shares are given by
equation (47) with Cov(z̃i,0, ãi,0) = −0.5.

Figure OA.2: Transition dynamics from a distorted initial capital distribution.

persistent, the approximation error characterized by equation (162) will be larger due
to serial dependence. Thus, our approximation works best for when the persistence of
idiosyncratic productivity is not extremely high.

The steady-state capital share summarizes the cross-sectional distribution of firms,
which determines the steady-state productivity Zt, aggregate output Yt, and aggregate
capital Kt. Given that our approximation can reasonably capture the capital share, it
is straightforward to verify that the steady-state productivity, aggregate output, and
aggregate capital under our approximation are also close to their ODE solutions.

Next, we check whether our approximation can generate reasonably accurate tran-
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sitional dynamics. We follow the exercise of Moll (2014) by starting from a distorted
initial allocation, in which firms’ capital and productivity are negatively correlated, i.e.,
Cov(z̃i,0, ãi,0) = −0.5. Figure OA.2 compares the transitional dynamics of productivity,
aggregate capital (normalized by trend growth), and aggregate output (normalized by
trend growth) between our approximation and the PDE solutions for different values of
yearly autocorrelation in idiosyncratic productivity zi,t. Panels A to C show that when
the yearly autocorrelation is zero, our approximated transitional dynamics are almost
identical to the transitional dynamics solved by the PDE method. Specifically, our approx-
imation can capture the immediate jump in productivity and aggregate output at t = 0.
Panels D to F show that our approximated transitional dynamics are also very close to the
transitional dynamics solved by the PDE method when yearly autocorrelation is 0.85. In
panels G to I, we consider the case with yearly autocorrelation equal to 0.97. It is shown
that even with very persistent process of idiosyncratic productivity, our approximation is
reasonably close to the transitional dynamics solved by the PDE method.

C TFP Formulas

We show that our formula for the final goods sector’s productivity Zt is consistent with
the formula of Hsieh and Klenow (2009) when goods are homogeneous and the industry
is not distorted by wedges.

The final-goods sector’s productivity Zt given by equation (41) of the main text is
equivalent to (77) with ut(z) being set at its optimal value, 1:

Zt =

[
1
Kt

∫ ∞

zt

∫ ∞

0
zkt(a, z)ϕt(a, z)dkdz

]α

, (163)

The above equation is equivalent to

Zt =

[
1
Kt

∫ ∞

0

∫ ∞

0
zkt(a, z)ϕt(a, z)dkdz

]α

, (164)

because kt(a, z) = 0 for z ≤ zt according to equation (23). Without loss of generality, we
rewrite equation (164) to focus on a countable number of firms,

Zt =

(
1
Kt

∑
i

ziki

)α

, (165)

We do a change of variables by replacing zi with z1/α
i (this is because the firm-level
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productivity in equation (1) is zα
i not zi), equation (165) becomes

Zt =

(
1
Kt

∑
i

z1/α
i ki

)α

, (166)

Next, we show that equation (166) is consistent with the industry-level TFP formula
used by Hsieh and Klenow (2009) when goods are homogeneous and the industry is not
distorted by wedges. In the model of Hsieh and Klenow (2009), there are s industries and
each industry has Ms firms. They define a single industry’s TFP as

TFPs =
Ys

Kαs
s L1−αs

s
. (167)

To be consistent with our model setup, we focus on deriving TFPs in one single industry
in the model of Hsieh and Klenow (2009), which corresponds to our final goods sector.
Moreover, without loss of generality, we also normalize the aggregate labor in industry s
to one, i.e., Ls = 1. We derive the formula of TFPs using the original notations of Hsieh
and Klenow (2009).

Substituting Ls = 1 and equation (3) of Hsieh and Klenow (2009) into (167),

TFPs =
1

Kαs
s

(
Ms

∑
i=1

Y
σ−1

σ
si

) σ
σ−1

. (168)

Substituting equation (4) of Hsieh and Klenow (2009) into the above equation,

TFPs =
1

Kαs
s

[
Ms

∑
i=1

(
AsiK

αs
si L1−αs

si

) σ−1
σ

] σ
σ−1

. (169)

Using the first-order condition, labor Lsi in the model of Hsieh and Klenow (2009) can be
solved as follows

Lsi =

[
(1− τYsi)Psi AsiK

αs
si (1− αs)

w

] 1
αs

. (170)

Substituting equation (170) into (169), we obtain

TFPs =
1

Kαs
s

(
1− αs

w

) 1−αs
αs
[

Ms

∑
i=1

[
A1/αs

si Ksi [(1− τYsi)Psi]
1−αs

αs

] σ−1
σ

] σ
σ−1

. (171)
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The labor market clearing condition in the model of Hsieh and Klenow (2009) implies

Ms

∑
i=1

[
(1− τYsi)Psi AsiK

αs
si (1− αs)

w

] 1
αs

= 1 (172)

Substituting (172) into (171),

TFPs =
1

Kαs
s

[
∑Ms

i=1

[
A1/αs

si Ksi [(1− τYsi)Psi]
1−αs

αs

] σ−1
σ

] σ
σ−1

[
∑Ms

i=1 A1/αs
si Ksi [(1− τYsi)Psi]

1/αs
]1−αs

(173)

Let σ→ ∞ and τYsi = 0, then Psi is equalized across all i, i.e., Psi ≡ Ps. This assumption
allows us to simplify equation (173) as follows,

TFPs =
1

Kαs
s

∑Ms
i=1 A1/αs

si Ksi(
∑Ms

i=1 A1/αs
si Ksi

)1−αs
=

[
1

Ks

Ms

∑
i=1

A1/αs
si Ksi

]αs

(174)

Except for notational differences, the formula (174) is identical to (166).

D Numerical Algorithm

We discretize the model with time interval ∆t. The Brownian motion shock dWt takes
two value,

√
∆t and −

√
∆t, with equal probabilities. Define Γt ≡ Cov(ãi,t, z̃i,t) =

−Mtvar(z̃i,t) = −Mtσ
2/2. The economy is summarized by the evolution of two en-

dogenous state variables, Et ≡ Nt/At and Γt.
We use superscripts + and − to denote variables at t + ∆t, corresponding to dWt =√

∆t and dWt = −
√

∆t, respectively. The endogenous state variable Γt evolves according
to equation (125):

Γt+∆t =Γt − θΓtdt + Cov(z̃i,t, dãi,t), (175)

where Cov(z̃i,t, dãi,t) is given by equation (134), as follows:

Cov(z̃i,t, dãi,t) =
(1 + λ)σ2κt

2
exp

(
σ2

4

)
Φ
(

σ2/2− z̃t

σ/
√

2

)
∆t

+
(1 + λ)σ

2
√

π
[(ztht − r f ,t − δk)∆t− σkdWt] exp

(
− z̃2

t
σ2

)
. (176)
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Let Γ+
t+∆t and Γ−t+∆t be the value of Γt+∆t corresponding to dWt =

√
∆t and dWt =

−
√

∆t, respectively. In equation (176), the variables κt, z̃t, and r f ,t are given by equations
(91), (115), and the SDF, respectively, as follows:

κt = α(1− ε)Z−
1
α

t
Yt

At

At

Kt
, (177)

z̃t = Γt −Φ−1
(

1
1 + λ

Kt

At

)
σ√
2

, (178)

r f ,t = −
1

∆t
ln
(

Et

[
Λt+∆t

Λt

])
, (179)

where Yt/At, Zt, and Kt/At are functions of state variables Et and Γt, given by equations
(89), (118), and (28), respectively, as follows:

Yt

At
= (εν)

ε
1−ε ZtE1−α

t

(
Kt

At

)α

, (180)

Zt =

[
(1 + λ)

At

Kt
exp

(
Γt +

σ2

4

)
Φ
(

Φ−1
(

1
1 + λ

Kt

At

)
+

σ√
2

)]α

. (181)

ztκt = r f ,t + δk + σk(σξ,t(zt)− ηt). (182)

The endogenous state variable Et evolves according to

∆Et

Et
=

∆Nt

Nt
− ∆At

At
. (183)

Substituting equations (121) and (122) into the above equation, we obtain

Et+∆t

Et
=1 + χ (χvt)

1−h
h ∆t− α(1− ε)

Yt

At
∆t + (r f ,t + δk)

Kt

At
∆t

+ (ρ + δa − δb − r f ,t)∆t−
(

σa − σk
Kt

At

)
dWt, (184)

Let E+
t+∆t and E−t+∆t be the value of Et+∆t corresponding to dWt =

√
∆t and dWt = −

√
∆t,

respectively.
In equation (184), the variable vt = v(Et, Γt) is given by equation (8); it is a function of
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state variables (Et, Γt) and can be solved recursively as follows

v(Et, Γt) =
1

1 + δb∆t

(
πt∆t + Et

[
Λt+∆t

Λt
v(Et+∆t, Γt+∆t)

])
=

1
1 + δb∆t

(
πt∆t +

1
2

Λ+
t+∆t
Λt

v(E+
t+∆t, Γ+

t+∆t) +
1
2

Λ−t+∆t
Λt

v(E−t+∆t, Γ−t+∆t)

]
, (185)

where πt is given by equation (93):

πt =
(1− ν)ε

Et

Yt

At
. (186)

Epstein and Zin (1989) show that the SDF in equation (15) is equivalent to

Λt+∆t

Λt
=e−

δ(1−γ)
1−1/ψ ∆t

(
Ct+∆t

Ct

)− 1−γ
ψ(1−1/ψ)

(1 + Rw,t+∆t∆t)
1/ψ−γ
1−1/ψ , (187)

where Rw,t+∆t the net return on wealth

1 + Rw,t+∆t∆t =
Wt+∆t

Wt − Ct∆t
. (188)

We have
Et

[
Λt+∆t

Λt
(1 + Rw,t+∆∆t)

]
= 1. (189)

Substituting equations (187) and (188) into (189), we obtain

1 = Et

e−
δ(1−γ)
1−1/ψ ∆t

(
Ct+∆t

Ct

)− 1−γ
ψ−1
(

Wt+∆t

Ct+∆t

Ct+∆t

Ct

1
Wt/Ct − ∆t

) 1−γ
1−1/ψ

 . (190)

Rearranging the above equation, we obtain

Wt

Ct
= ∆t + e−δ∆tEt

(Ct+∆t

Ct

)1−γ (Wt+∆t

Ct+∆t

) 1−γ
1−1/ψ


1−1/ψ

1−γ

. (191)

The wealth-consumption ratio Wt/Ct is a function of state variables, denoted by WCt ≡
WC(Et, Γt). Let C+

t+∆t and C−t+∆t be the value of Ct+∆t corresponding to dWt =
√

∆t and
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dWt = −
√

∆t, respectively. We can rewrite equation (191) as

WCt = ∆t + e−δ∆t

1
2

(
C+

t+∆t
Ct

)1−γ

(WC+
t+∆t)

1−γ
1−1/ψ +

1
2

(
C−t+∆t

Ct

)1−γ

(WC−t+∆t)
1−γ

1−1/ψ

 ,

(192)
where

WC+
t+∆t = WC(E+

t+∆t, Γ+
t+∆t), (193)

WC−t+∆t = WC(E−t+∆t, Γ−t+∆t). (194)

The aggregate consumption is given by equation (14):

Ct

At
=

wt

At
+

Dt

At
+ r f ,t

Bt

At
−
(

Bt+∆t

At+∆t

At+∆t

At
− Bt

At

)
1

∆t

=
wt

At
+

Dt

At
+ r f ,t

(
Kt

At
− 1
)
−
[(

Kt+∆t

At+∆t
− 1
)

At+∆t

At
−
(

Kt

At
− 1
)]

1
∆t

. (195)

Because Ct is known (i.e., dBt/Bt is locally deterministic), theoretically we have(
K+

t+∆t

A+
t+∆t
− 1

)
A+

t+∆t
At

=

(
K−t+∆t

A−t+∆t
− 1

)
A−t+∆t

At
, (196)

where K+
t+∆t, A+

t+∆t and K−t+∆t, A−t+∆t are the values of Kt+∆t, At+∆t corresponding
to dWt =

√
∆t and dWt = −

√
∆t, respectively. Because of property (196), the nu-

merical error caused by discretization is minimized by using 0.5
(

K+
t+∆t

A+
t+∆t
− 1
)

A+
t+∆t
At

+

0.5
(

K−t+∆t
A−t+∆t

− 1
)

A−t+∆t
At

to approximate
(

Kt+∆t
At+∆t

− 1
)

At+∆t
At

in equation (195). Thus, the term

Ct/At ≡ CA(Et, Γt) in equation (195) can be solved as a function of state variables Et and
Γt.

The consumption growth terms in equation (192) are given by

C+
t+∆t
Ct

=
CA(E+

t+∆t, Γ+
t+∆t)

CA(Et, Γt)

At+∆t

At
. (197)

C−t+∆t
Ct

=
CA(E−t+∆t, Γ−t+∆t)

CA(Et, Γt)

At+∆t

At
. (198)
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The variables wt/At and Dt/At are given by equations (44) and (31):

wt

At
≡wA(Et, Γt) = (1− α)(1− ε)

Yt

At
, (199)

Dt

At
≡DA(Et, Γt) = ρ + (1− ν)ε

Yt

At
− St

At
, (200)

where St/At is given by equation (46)

St

At
=

St

Nt
Et = (χv(Et, Γt))

1
h Et. (201)

The variables At+∆t/At is given by equation (121):

At+∆t

At
= 1 + α(1− ε)

Yt

At
∆t− (r f ,t + δk)

Kt

At
∆t− (ρ + δa − r f ,t)∆t +

(
σa − σk

Kt

At

)
dWt.

(202)
After solving the WC(Et, Γt) ratio from equation (192), substituting into the equation

(187) to obtain the SDF:

Λ+
t+∆t
Λt

= e−
δ(1−γ)
1−1/ψ ∆t

(
C+

t+∆t
Ct

)−γ(
WC(E+

t+∆t, Γ+
t+∆t)

WC(Et, Γt)− ∆t

) 1/ψ−γ
1−1/ψ

, (203)

Λ−t+∆t
Λt

= e−
δ(1−γ)
1−1/ψ ∆t

(
C−t+∆t

Ct

)−γ(
WC(E−t+∆t, Γ−t+∆t)

WC(Et, Γt)− ∆t

) 1/ψ−γ
1−1/ψ

. (204)

Welfare. The preference (12) in discrete time is

Ut =

[
(1− e−δ∆t)C1−1/ψ

t + e−δ∆t
(

Et

[
(Ut+∆t)

1−γ
]) 1−1/ψ

1−γ

] 1
1−1/ψ

. (205)

Dividing both sides by At and define Ũt = (Ut/At)1−1/ψ, we obtain

Ũt = (1− e−δ∆t)

(
Ct

At

)1−1/ψ

+ e−δ∆t

(
Et

[(
At+∆t

At

)1−γ

Ũ
1−γ

1−1/ψ

t

]) 1−1/ψ
1−γ

. (206)

We obtain Ũt by solving the above equation. We then obtain Ut = Ũ
1

1−1/ψ

t At, which is
homogeneous of degree one in Ct.
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Steps of Implementing the Numerical Algorithm. Following the standard practice, we
discretize the state variables (Et, Γt) into dense grids. The values that not fall on any grid
are obtained by linear interpolation/extrapolation. We then solve the model in the steps
listed below. Because we need to solve a large number of nonlinear equations, we use the
commercial nonlinear solver knitro.12 All the programs are written in C++ with parallel
computing in a state-of-the-art server of 56 cores.

(1) Guess v(Et, Γt) = 0.1 for all states.

(2) Guess σξ(zt, Et, Γt) = 0 for all states.

(3) Guess η(Et, Γt) = 0 for all states.

(4) Solve the evolution of endogenous state variables Et and Γt.

(5) Solve equation (191) using knitro to obtain the wealth-consumption ratio as a function
of state variables, i.e., WC(Et, Γt).

(6) Solve equations (203) and (204) to obtain the SDF as a function of state variables,
i.e.,

Λ+
t+∆t
Λt

≡ SDF(E+
t+∆t, Γ+

t+∆t), (207)

Λ−t+∆t
Λt

≡ SDF(E−t+∆t, Γ−t+∆t). (208)

Next, calculate the market price of risk ηt in equation (20) as follows

η̂(Et, Γt) = −
SDF(E+

t+∆t, Γ+
t+∆t)− SDF(E−t+∆t, Γ−t+∆t)

2
√

∆t
. (209)

If max |η̂(Et, Γt)− η(Et, Γt)| < 10−9, stop. Otherwise, jump to step (4) using η̂(Et, Γt)

as the initial guess of η(Et, Γt).

(7) Solve managers’ problem (18) to obtain σξ(zt, Et, Γt). This is achieved in the follow-
ing substeps.

(7.1) Problem (18) can be simplified because it is linear in ai,t as in equation (64).
This means that we only need to solve ξ(zi,t, Et, Γt) recursively as follows

ξ(zi,t, Et, Γt) = τ∆t + Et

[
Λt+∆t

Λt

ai,t+∆t

ai,t
ξ(zi,t+∆t, Et+∆t, Γt+∆t)

]
(210)

12See https://www.artelys.com/solvers/knitro for more details.
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The evolution ai,t+∆t/ai,t is given by equation (3).

(7.2) Calculate σ̂ξ(zi,t, Et, Γt) as follows

σ̂ξ(zi,t, Et, Γt) =
ξ+t+∆t − ξ−t+∆t

2ξ(zi,t, Et, Γt)
√

∆t
, (211)

where

ξ+t+∆t =Et
[
ξ(zi,t+∆t, E+

t+∆t, Γ+
t+∆t)

]
, (212)

ξ−t+∆t =Et
[
ξ(zi,t+∆t, E−t+∆t, Γ−t+∆t)

]
. (213)

The expectation is taken with respect to idiosyncratic shocks in zi,t+∆t.

(7.3) Solve z(Et, Γt) using equation (182), and then find the value of σ̂ξ(zt, Et, Γt).

(7.4) If max
∣∣σ̂ξ(zt, Et, Γt)− σξ(zt, Et, Γt)

∣∣ < 10−9, stop. Otherwise, jump to step (3)
using σ̂ξ(zt, Et, Γt) as the initial guess for σξ(zt, Et, Γt).

(8) Solve equation (185) to obtain v̂(Et, Γt).

(9) If max |v̂(Et, Γt)− v(Et, Γt)| < 10−9, stop. Otherwise, jump to step (2) using v̂(Et, Γt)

as the initial guess for v(Et, Γt).
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