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1. Introduction
A central issue in financial economics is to understand
the risk–return relationship for financial assets, as
exemplified by the classical capital asset pricing model
(CAPM) and arbitrage pricing theory (APT). Building
on the seminal work of Markowitz (1952), CAPM, as
proposed by Sharpe (1964) and others, characterizes
the market equilibrium when all market participants
hold mean-variance efficient portfolios. Unlike the
CAPM, the APT introduced by Ross (1976a, b) is based
on an asymptotic arbitrage argument rather than on
market equilibrium, which allows for multiple risk fac-
tors and does not require the identification of the mar-
ket portfolio; see, e.g., Huberman (1982), Chamberlain
(1983), Chamberlain and Rothschild (1983), Ingersoll
(1984), Huberman and Wang (2008), among others.
In terms of empirical performance, APT improves on

CAPM in that cross-sectional differences in expected
asset returns are better accounted for by multiple fac-
tors in APT; see the Nobel-prize-winning work of Fama
and French (1993) and (2012), among others. Going
beyond expected returns, however, the APT models
with the famous factors in existing literature do not
seem to capture all the cross-sectional variations in
realized asset returns. In particular, amotivating exam-
ple of fitting an APT model to the European coun-
tries stock indices returns (see Section 2.1) shows that
(i) there is evidence of cross-sectional spatial inter-
action among the residuals of the APT regression
model; and (ii) the no asymptotic arbitrage constraint
(i.e., zero-intercept constraint) implied by the APT is

rejected by the data, which demonstrates that the exist-
ing APT model and famous factors are not adequate in
accounting for the cross-sectional variations.

To better account for potential spatial correlation
among residuals of APT models and to better capture
the no asymptotic arbitrage constraint, in this paper,
we attempt to link spatial econometrics, which empha-
sizes the statisticalmodeling of spatial interaction,with
the classical CAPM and APT. Empirical importance
of spatial interaction has already been found in the
real estate markets (see, e.g., Anselin 1988, Cressie
1993), in the U.S. equitymarket (see Pirinsky andWang
(2006) for comovements of common stock returns of
U.S. corporations in the same geographic area), and in
international stock portfolios (see Bekaert et al. 2009).
Coval and Moskowitz (2001) demonstrated empiri-
cally the importance of spatial information in the
investment decisions and outcomes of individual fund
managers.

In this paper we study the impact of spatial infor-
mation on overall markets in the form of CAPM or
APT. More precisely, we first propose a spatial capital
asset pricing model (S-CAPM) and a spatial arbitrage
pricing theory (S-APT), and then we study empiri-
cal implications of the models. The new models can
be applied to financial assets that can be sold short,
such as national/regional stock indices and futures
contracts on the S&P/Case–Shiller Home Price Indices
(Case and Shiller 1987).

Our S-CAPM and S-APT differ from existing mod-
els in spatial econometrics. The consideration of
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equilibrium pricing and no arbitrage pricing imposes
certain constraints on the parameters in the S-CAPM
and S-APT models (see Equations (15) and (26) in The-
orem 2); these constraints are the manifestation of both
the effect of spatial interaction and the economic ratio-
nale of asset pricing. By contrast, the parameters in
existing spatial econometric models are generally not
subject to constraints.
After developing the economic models, we give two

applications of the proposed S-APT. First, we con-
tinue the investigation of the motivating example in
Section 2.1, in which the comovements of returns of
eurozone stock indices are studied, by extending the
factor model for international stocks proposed in Fama
and French (2012) to incorporate spatial interaction.
Factor models for stock markets have been well stud-
ied in the literature. In the groundbreaking work of
Fama and French (1993), two factors related to firm size
and book-to-market equity are constructed and shown
to have great explanatory power of cross-sectional
stock returns. In the authors’ approach, a factor is
constructed as the difference between the returns of
firms with certain characteristics (e.g., small cap) and
those with opposite characteristics (e.g., large cap).
This approach has at least two advantages. First, fac-
tors constructed in this way are payoffs of zero-cost
portfolios that are traded in the market, and further
steps of linear projection of factors are unnecessary.
Second, the factors have clear economic interpretation.
For instance, since the book-to-market (B/M) ratio is
indicative of financial distress, the factor constructed
according to the ratio can be viewed as a proxy for dis-
tress risk. Fama and French (2012) investigate the per-
formance of the market, size, value, and momentum
factors in international stock markets.

We extend Fama and French (2012) in three ways:
(i) By using the S-APT model instead of APT models
(factor models without spatial interaction), we inves-
tigate the role of spatial interaction in the explana-
tion of comovements of stock index returns. We find
that spatial interaction is significant, even after control-
ling for popular factors, including market, size, value,
and momentum factor. (ii) Adding spatial interaction
for the comovements not only improves the overall
model fitting in terms of the Akaike information crite-
rion (AIC) but also reduces the degree of spatial cor-
relation (i.e., κ in Equation (2)) among residuals of
the fitted model. Furthermore, the no asymptotic arbi-
trage constraint (i.e., the zero-intercept constraint) is no
longer rejected by the data after spatial interaction is
incorporated in the model. (iii) We focus on eurozone
stock indices that are portfolios of stocks implicitly
sorted by locations/nations, while Fama and French
(2012) study the returns of stock portfolios constructed
according to other issuer characteristics such as size
and value.

As the second application, we apply the S-APT
model to the study of risk-return relationship of real
estate securities, particularly the S&P/Case–Shiller
Home Price Indices (CSI Indices) futures. The CSI
Indices are constructed based on the method proposed
by Case and Shiller (1987) and are the leading mea-
sure of single family home prices in the United States.
It is important to study the risk–return relationship of
real estate securities such as the CSI Indices futures
because they are useful instruments for risk manage-
ment and for hedging in residential housing markets
(Shiller 1993), similar to the function that futures con-
tracts fulfill in other financial markets; see Fabozzi et al.
(2012) and the references therein for the pricing and
use of property derivatives for risk management.

We add to the literature on the study of real estate
securities by constructing a three-factor S-APT model
for the CSI Indices futures returns. Using monthly
return data, we find that the spatial interaction among
CSI indices futures returns are significantly positive.
In addition, the no asymptotic arbitrage (i.e., zero-
intercept) constraint implied by the S-APTmodel is not
rejected by the futures data. Furthermore, incorporat-
ing spatial interaction improves themodel fitting to the
data in terms of AIC and eliminates the spatial corre-
lation among the residuals of APT models.

Our paper significantly differs from existing liter-
ature that also incorporates spatial information. For
example, our paper differs from Ortalo-Magné and
Prat (2016) (hereafter cited as OP) mainly in the fol-
lowing aspects: (i) Our paper focuses on the S-APT
and its implications; OP does not study S-APT (or asset
pricing) under the no asymptotic arbitrage assump-
tion. (ii) In our S-CAPM, we assume that the spatial
interaction between the returns of assets is exoge-
nously given as in (6); OP does not make such an
assumption. Instead, OP considers a general equilib-
rium model where the city-specific productivity of
agents, city-specific income of agents, and stock div-
idends are exogenously given, but the agent’s choice
of where to live, stock prices, city-specific housing
prices, and city-specific rent prices and their returns
are determined by the general equilibrium. (iii) Our
paper concerns the risk and return of real estate secu-
rities that are liquid and can be easily shorted, such
as futures contracts on the CSI Indices; OP derives the
equilibrium prices of houses and rents that are illiq-
uid and difficult to be sold short. (iv) Our S-CAPM
assumes that investors hold mean-variance efficient
portfolios, but OP assumes that the utility function of
agents is the CARAutility. (v) In our S-CAPM, themar-
ket portfolio is still the same as the classical CAPM,
which is the valueweighted portfolio of all assets; how-
ever, in the CAPM derived under the model of OP,
the real estate in the market portfolio is adjusted by
the hedging demand of agents. Our paper also differs
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from Fernandez (2011) in the following ways: (i) Our
paper focuses on the S-APT; Fernandez (2011) does not
study S-APT (or asset pricing) under the no asymptotic
arbitrage assumption. (ii) We rigorously prove that
Equation (15) of this paper holds under the assumption
in Theorem 1, but Fernandez (2011) just assumes that
Equation (15) is true without any theoretical justifica-
tion. (iii) We derive the S-CAPM in Theorem 1, which
is not obtained in Fernandez (2011). (iv) Our S-CAPM
incorporates futures returns, which are not considered
in Fernandez (2011).
In summary, the main contribution of this paper is

twofold: (i) From a theoretical perspective, we extend
the classical asset pricing theories of CAPM and APT
by proposing a spatial CAPM (S-CAPM) and a spatial
APT (S-APT) that incorporate spatial interaction. The
S-CAPM and S-APT characterize how spatial interac-
tion affects asset returns by assuming, respectively, that
investors hold mean-variance efficient portfolios and
that there is no asymptotic arbitrage. In addition, we
develop estimation and testing procedures for imple-
menting the S-APT model. (ii) From an empirical per-
spective, we apply the S-APT models to the study of
the eurozone stock indices returns and the futures con-
tracts written on the CSI Indices. In both cases, the spa-
tial interaction incorporated in the S-APTmodel seems
to be a significant factor in explaining asset return
comovements.

The remainder of the paper is organized as follows.
In Section 2, a motivating example is discussed and a
linear model with spatial interaction is introduced. The
S-CAPM and S-APT for ordinary assets and futures
contracts are derived in Sections 3 and 4, respectively.
Section 5 develops the econometric tools for imple-
menting the S-APT model. The rigorous econometric
analysis of the identification and statistical inference
problems for the proposed spatial econometric model
is given in E-companion EC.4. The empirical studies on
the eurozone stock indices and the CSI Indices futures
using the S-APT are provided in Sections 6 and 7,
respectively. Section 8 concludes.

2. Preliminary
2.1. A Motivating Example of Spatial Correlation
We consider the comovements of the returns of stock
indices in developed markets in the European region.
To minimize the effect of exchange rate risk, we restrict
the study to the eurozone, which consists of the coun-
tries that adopt the euro as their currency. In total,
there are 11 countries with developed stock markets in

Table 1. The Stock Indices of the 11 Eurozone Countries with Developed Stock Markets

Country Austria Belgium Finland France Germany Greece Ireland Italy Netherlands Portugal Spain

Stock index ATX BEL20 HEX CAC DAX ASE ISEQ FTSEMIB AEX BVLX IBEX

the eurozone. The data consist of the monthly simple
returns of stock indices of these countries; see Table 1.
Similar to Fama and French (2012), all returns are con-
verted and denominated in U.S. dollars. Since Greece
adopted the euro in the year 2000, the time period
of the data spans from January 2001 to October 2013.
Since all returns are denominated in U.S. dollars, the
simple return of a one-month U.S. Treasury bill is used
as the risk-free return.

We apply the following APT model to the monthly
excess returns of the 11 stock indices:

rit − r f t � αi +

4∑
k�1

βik fkt + εit ,

i � 1, . . . , 11; t � 1, . . . , T, (1)

where rit is the return of the ith stock index in the
tth month; r f t is the risk-free return in the tth month;
and fkt , k � 1, 2, 3, 4, are the market, size, value, and
momentum factors in the tth month, respectively. The
four factors are defined in Fama and French (2012),
and the data for the four factors are downloaded from
the website of Kenneth R. French.1 The factor loading
of the ith stock index excess return on the kth factor
is denoted by βik , and εit is the residual. To investi-
gate potential spatial correlation among the 11 return
residuals, we consider the following model for ε̃t �

(ε1t , ε2t , . . . , ε11t)′:
ε̃t � κW ε̃t + a + ξ̃t , t � 1, 2, . . . ,T, (2)

where W � (wi j) is a 11 × 11 matrix defined as wi j :�
(si di j)−1 for i , j and wii � 0, where di j is the driving
distance between the capital of country i and that of
country j and si :� ∑

j d−1
i j ; κ is a scalar parameter; a

is a vector of free parameters; and ξ̃t is assumed to
have a normal distribution N(0, σ2I11), with σ being an
unknown parameter and I11 being the 11× 11 identity
matrix. When κ is not zero, each component of ε̃t is
influenced by other components to a degree dependent
on their spatial distances.2

We fit the model (2) to the residuals and found that
the spatial parameter κ for the residuals is statistically
positive with a 95% confidence interval of [0.02, 0.21].3
This provides evidence that there is a statistically sig-
nificant spatial correlation among the residuals that
is not adequately captured by the four factors in the
APT model.

In addition, we carry out the following hypothesis
test of the no asymptotic arbitrage constraint (i.e., zero-
intercept constraint) of the APT model:

H0: α1 � α2 � · · · � α11 � 0; H1: else. (3)
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We can test the hypothesis using the conditional likeli-
hood ratio test statistic:

LR � 2
[ T∑

t�1
l(r̃t | f̃t , θ̂) −

T∑
t�1

l(r̃t | f̃t , θ
∗)
]
,

where r̃t � (r1t , r2t , . . . , r11t) and f̃t � ( f1t , . . . , f4t). Let∑T
t�1 l(r̃t | f̃t , θ̂) denote the conditional log-likelihood

function evaluated at θ̂, which is the conditional max-
imum likelihood estimate (MLE) of parameters esti-
mated with no constraints, while ∑T

t�1 l(r̃t | f̃t , θ
∗) is its

counterpart evaluated at the conditional MLE θ∗ esti-
mated under the constraint that the null holds (i.e.,
αi � 0 for all i). Under the null hypothesis, the condi-
tional likelihood ratio test statistic has an asymptotic
χ2(11) distribution; see Section 5.3 for more discussion
on the distribution of the test statistic. We find that

the p-value of the test (3)� 0, (4)

which provides further evidence that the four fac-
tors may not capture the comovements of the indices
returns well enough. The inadequacy of the APT
model (1) for explaining the comovements of the in-
dices returns is summarized in Table 2.
It is probable that the aforementioned unsatisfactory

performance of the APT model is due to misspecifica-
tion of factors. To explore this possibility, we run the
Ramsey Regression Equation Specification Error Test
(RESET), one of the most popular specification tests
for linear regressionmodels. In our application, RESET
tests whether nonlinear combinations of current fac-
tors have any power in explaining the excess returns
on the left-hand side of the APT regression. The intu-
ition behind the test is that if nonlinear combinations
of factors have any power in explaining cross-sectional
excess returns, then the factors of the APT model is
misspecified. For a detailed and technical discussion of
the RESET, see Ramsey (1969).

The RESET finds weak evidence of factor misspec-
ification. Indeed, RESET indicates that among the
11 excess returns of the national stock indices, only 3
may benefit from additional factors. Moreover, it is not
clear whether the additional factor(s) can help explain

Table 2. The Inadequacy of the APT Model (1) for
Explaining the Comovements of the 11 Eurozone
National Stock Indices Excess Returns

Questions Answers from the data

Do the residuals in (1) have
spatial correlation?

Yes, because the 95%
confidence interval of κ in
(2) is [0.02, 0.21].

Is the no asymptotic arbitrage
(zero-intercept) test (3) rejected
by the data?

Yes, because of (4).

the spatial correlation observed in the residuals. Our
S-APT model, to be presented below in the paper, pro-
vides a unified way to address the spatial correlation
in residuals. Furthermore, the no asymptotic arbitrage
(i.e., zero-intercept) constraint is not rejected by the
data under our S-APT model.

2.2. A Model of Spatial Interaction
Consider a one-period economy with n risky assets in
the market whose returns are governed by the follow-
ing linear model:

ri � ρ
n∑

j�1
wi j r j + αi + εi , i � 1, . . . , n , (5)

where ri is the uncertain return of asset i, αi is a con-
stant, and εi is the residual noise related to asset i.
For i , j, wi j specifies the influence of the return of
asset j on that of asset i due to spatial interaction, and
wii � 0. The degree of spatial interaction is represented
by the parameter ρ. Let r̃ :� (r1 , . . . , rn)′, W :� (wi j),
α :� (α1 , . . . , αn)′, and ε̃ :� (ε1 , . . . , εn)′. Then, the above
model can be represented as

r̃ � ρWr̃ + α+ ε̃, E[ε̃]� 0, E[ε̃ε̃′]� V. (6)

Following the convention in spatial econometrics, we
assume that the spatial weight matrix W is exoge-
nously given; W is typically defined using quantities
related to the location of assets, such as distance, con-
tiguity, and relative length of common borders. For
instance, W can be specified as wii � 0 and wi j � d−1

i j for
i , j, where di j is the distance between asset i and asset
j. If other asset returns do not have spatial influence
on ri , then the ith row of W can simply be set to zero.

Henceforth, we assume that ρ−1 is not an eigenvalue
of W . Then, In−ρW is invertible,4 and (6) can be rewrit-
ten as

r̃ � (In − ρW)−1α+ (In − ρW)−1 ε̃, (7)

where In is the n × n identity matrix. The mean and
covariance matrix of r̃ are thus given by

µ � E[r̃]� (In − ρW)−1α,

Σ � Cov(r̃)� (In − ρW)−1V(In − ρW ′)−1.
(8)

3. The Spatial Capital Asset Pricing Model
In this section we develop S-CAPM, a spatial capi-
tal asset pricing model that generalizes the CAPM by
incorporating spatial interaction. In our study, it is
important to consider futures contracts as stand-alone
securities rather than as derivatives of the underly-
ing instruments because the instruments underlying
futures contracts in the real estate markets may not
be tradable. For example, the CSI Indices futures are
traded at Chicago Mercantile Exchange, but the under-
lying CSI Indices cannot be traded directly.
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Therefore, we develop the S-CAPM for both ordi-
nary assets and futures contracts. More specifically,
suppose in themarket there are n1 ordinary risky assets
with returns (r1 , . . . , rn1

), a risk-free asset with return r,
and n2 futures contracts. The return of a futures con-
tract cannot be defined in the same way as that of an
ordinary asset because the initial value of a futures
contract is zero. Hence, we follow the convention in the
literature (see, e.g., De Roon et al. 2000) and define

rn1+i :�
Fi , 1 − Fi , 0

Fi , 0
(9)

as the “nominal return” of the ith futures contract,
where Fi , 0 and Fi , 1 are the futures prices of the ith
futures contract at time 0 and time 1 (the beginning
and end of the trading period), respectively, and i �
1, . . . , n2. Let n � n1 + n2 and assume that the n returns
r̃ � (r1 , . . . , rn1

, rn1+1 , . . . , rn)′ satisfy the model (6). Then,
the mean µ and covariance matrix Σ of r̃ are given
by (8).
Now consider the mean-variance problem faced by

an investor who can invest in the n1 ordinary assets
and n2 futures contracts. Because the investor’s portfo-
lio includes both ordinary assets and futures contracts,
the return of the portfolio has to be calculated more
carefully than if there were no futures contracts in the
portfolio. Then, the mean-variance analysis can be car-
ried out; see E-companion EC.1. Because both µ and Σ
are functions of ρ and W , the optimal portfolio weights
obtained by the mean-variance analysis and the effi-
cient frontiers are affected by spatial interaction. For
example, Figure 1 shows the efficient frontiers for dif-
ferent values of ρ with all the other parameters in the
model (6) fixed for a portfolio of n1 � 10 ordinary assets
and n2 � 0 futures contracts. It is clear that the efficient
frontiers are significantly affected by ρ. The parameters

Figure 1. Efficient Frontiers for ρ � 0, 0.2, 0.4, 0.6, and 0.8,
Respectively, When There Is No Risk-Free Asset

0 5 10 15 20 25 30
0

5

10

15

20

25

�  (%)

e 
(%

)

�  = 0
�  = 0.2
�  = 0.4
�  = 0.6
�  = 0.8

Notes. The terms W , α, and V are as specified above. The efficient
frontiers are significantly affected by ρ.

W , α, and V used in calculating the efficient frontiers
in Figure 1 are specified as

W �

�������������������
�

0 0.080 0.131 0.206 0.054
0.119 0 0.082 0.193 0.067
0.129 0.055 0 0.086 0.073
0.197 0.125 0.083 0 0.048
0.070 0.059 0.097 0.066 0
0.081 0.055 0.139 0.068 0.135
0.143 0.169 0.075 0.306 0.048
0.072 0.050 0.132 0.062 0.173
0.183 0.062 0.248 0.111 0.064
0.082 0.066 0.115 0.078 0.194

0.055 0.128 0.068 0.204 0.075
0.055 0.223 0.069 0.103 0.089
0.093 0.066 0.122 0.273 0.103
0.044 0.261 0.056 0.119 0.068
0.119 0.056 0.212 0.093 0.228

0 0.058 0.235 0.107 0.122
0.044 0 0.054 0.096 0.064
0.169 0.051 0 0.108 0.181
0.065 0.077 0.091 0 0.099
0.091 0.063 0.188 0.122 0

�������������������
�

;

α � (1.334%, 1.005%, 1.209%, 1.141%, 1.101%, 1.352%,
3.531%, 8.229%, 1.101%, 1.893%)′; and V � 0.015 · I10,
where I10 is a 10× 10 identity matrix.

Based on the mean-variance analysis, we derive the
following S-CAPM, which characterizes how spatial
interaction affects expected asset return under market
equilibrium.
Theorem 1 (S-CAPM for Both Ordinary Assets and Fu-
tures). Suppose that there exists a risk-free return r and that
the n � n1 + n2 risky returns satisfy the model (6), of which
the first n1 are returns of ordinary assets and the others
are returns of futures contracts. Suppose n1 > 0.5 Let rM
be the return of market portfolio. If each investor holds a
mean-variance efficient portfolio, then, in equilibrium, rM is
mean-variance efficient, and every investor holds only the
market portfolio and the risk-free asset. Furthermore,
(i) for the ordinary assets,

E[ri] − r �
Cov(ri , rM)
Var(rM) (E[rM] − r)

�
φ′

MΣηi

φ′
MΣφM

(E[rM] − r), i � 1, . . . , n1; (10)

(ii) for the futures contracts,
E[Fi , 1] − Fi , 0

�
Cov(Fi , 1 , rM)

Var(rM) (E[rM] − r)

� Fi , 0
φ′

MΣηn1+i

φ′
MΣφM

(E[rM] − r), i � 1, . . . , n2 , (11)
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where Σ is the covariance matrix of r̃, φM is the portfolio
weights of the market portfolio, and ηi is the n-dimensional
vector with the ith element being 1 and all other elements
being 0. Define

1n1 ,n2
:� (1, . . . , 1︸¨̈︷︷¨̈︸

n1

, 0, . . . , 0︸¨̈︷︷¨̈︸
n2

)′; (12)

then r̃ − r1n1 ,n2
is the excess asset return,6 and the S-CAPM

Equations (10) and (11) are equivalent to a single equation,

E[r̃] − r1n1 , n2
�
Cov(r̃ , rM)
Var(rM)

(E[rM] − r). (13)

Proof. See E-companion EC.2.1. �

By incorporating spatial interaction, the S-CAPM
generalizes not only the CAPM for ordinary assets but
also the CAPM for futures presented in Black (1976)
and Duffie (1989, Chap. 4). The S-CAPM can also be
extended to the case in which there is no risk-free asset;
see E-companion EC.2.2.

It follows from the S-CAPM Equations (10) and (11)
that the degree of spatial interaction represented by the
parameter ρ affects asset risk premiums in equilibrium
because Σ is a function of W and ρ (see (8)).

The S-CAPM implies a zero-intercept constraint
on the spatial econometric models for asset returns.
Consider the following spatial econometric model, in
which the excess returns r̃ − r1n1 , n2

are regressed with
a spatial interaction term on the excess return of the
market portfolio rM − r:

r̃ − r1n1 , n2
� ρW(r̃ − r1n1 , n2

)+ ᾱ+ β(rM − r)+ ε̃,
E[ε̃] � 0, Cov(rM , ε̃)� 0.

(14)

Then, the S-CAPM implies that, in the above model,

ᾱ � 0. (15)

To see this, rewrite (14) as (In − ρW)(r̃ − r1n1 , n2
) �

ᾱ + β(rM − r) + ε̃. Taking covariance with rM on both
sides and using Cov(rM , ε̃) � 0 yields β � (In − ρW) ·
(Cov(r̃ , rM)/Var(rM)), from which it follows that ᾱ �

(In − ρW)E[(r̃ − r1n1 , n2
) − (Cov(r̃ , rM)/Var(rM))(rM − r)].

If the S-CAPM holds, then (13) implies ᾱ � 0.7

4. The Spatial Arbitrage Pricing Theory
In this section, we derive S-APT, the spatial arbitrage
pricing theory, and point out its implications. As in
Section 2.2, we consider a one-period model with n
risky assets. Consider the following factor model with
spatial interaction:

ri � ρ
n∑

j�1
wi j r j + αi +

K∑
k�1

βik fk + εi , i � 1, . . . , n , (16)

where ri , ρ, wi j , αi , and εi have the same meaning as in
(6); f1 , . . . , fK are K risk factors with E[ fk]� 0; and βik is
the loading coefficient of the asset i on the factor k. Let
r̃ :� (r1 , . . . , rn)′, W :� (wi j), α :� (α1 , . . . , αn)′, B :� (βik),
f̃ :� ( f1 , . . . , fK)′, and ε̃ :� (ε1 , . . . , εn)′. Then, the above
model can be represented in a vector-matrix form as

r̃ � ρWr̃ + α+ B f̃ + ε̃, E[ f̃ ]� 0, E[ε̃]� 0,
E[ε̃ε̃′]� V, E[ f̃ ε̃′]� 0.

(17)

Themodel (17) reduces to the classical APTwhen ρ � 0.

4.1. Asymptotic Arbitrage
We first introduce the notion of asymptotic arbitrage
defined in Huberman (1982) and in Ingersoll (1984).
Suppose the set of factors f̃ � ( f1 , . . . , fK)′ are fixed,
and consider a sequence of economies with increas-
ing numbers of risky assets whose returns depend
on these factors and on spatial interaction. As in Sec-
tion 3, in the nth economy there are n1 ordinary assets
and n2 futures contracts, where n � n1 + n2. Suppose
the futures prices of the ith futures contract are F(n)i , 0 and
F(n)i , 1 at time 0 and time 1, respectively. As in Section 3,
we define the futures returns as

r(n)n1+i �
F(n)i , 1 − F(n)i , 0

F(n)i , 0

, i � 1, . . . , n2. (18)

Assume the returns r̃(n) � (r(n)1 , . . . , r(n)n )′ are gener-
ated by

r̃(n) � ρ(n)W (n) r̃(n) + α(n) + B(n) f̃ + ε̃(n) , where
E[ f̃ ] � 0, E[ε̃(n)] � 0,

E[ε̃(n)(ε̃(n))′] � V (n) , E[ f̃ (ε̃(n))′] � 0.
(19)

The (n +1)th economy includes all the n risky assets in
the nth economy and one extra risky asset. In the nth
economy, a portfolio is denoted by a vector of dollar-
valued positions h(n) :� (h(n)1 , . . . , h(n)n1 , h

(n)
n1+1 , . . . , h

(n)
n )′,

where h(n)1 , . . . , h(n)n1 denote the dollar-valued wealth
invested in the first n1 assets; h(n)n1+i :� OiF

(n)
i , 0 , where Oi

denotes the number of ith futures contracts held in the
portfolio, and i � 1, . . . , n2. A portfolio h(n) is a zero-
cost portfolio if (h(n))′1n1 , n2

� 0, where 1n1 , n2
is defined

in (12). Then, the payoff of the zero-cost portfolio is
(h(n))′(r̃(n) + 1n1 , n2

)� (h(n))′ r̃(n),8 because (h(n))′1n1 , n2
� 0.

Asymptotic arbitrage is defined to be the existence of
a subsequence of zero-cost portfolios {h(mk ) , k �1, 2, . . .}
and δ > 0 such that

E[(h(mk ))′ r̃(mk )] ≥ δ, for all k , and
lim
k→∞

Var((h(mk ))′ r̃(mk ))� 0.9 (20)
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4.2. The Spatial Arbitrage Pricing Theory:
A Special Case in Which Factors Are Tradable

To obtain a good intuition, we first develop the S-APT
in the case in which the factors are the payoff of
tradable zero-cost portfolios and there is a risk-free
return r. Suppose the risk factors f̃ are given by

f̃ � g̃ −E[ g̃], (21)

where g̃ � (g1 , g2 , . . . , gK)′, and each gk is the payoff of
a certain tradable zero-cost portfolio. The model (19)
can then be written as

r̃(n) − r1n1 , n2
� ρ(n)W (n)(r̃(n) − r1n1 , n2

) + ᾱ(n)

+ B(n) g̃ + ε̃(n) , (22)
ᾱ(n) :� α(n) − (In − ρ(n)W (n))1n1 , n2

r − B(n)E[ g̃]. (23)

Theorem 2. Suppose there is a risk-free return r and the
risk factors f̃ are given by (21) where g1 , g2 , . . . , gK are the
payoffs of certain zero-cost portfolios. Suppose

E[ε(n)i ε(n)j ]� 0, for i , j;

Var(ε(n)i ) ≤ σ̄2 , for all i and n ,
(24)

where σ̄2 is a fixed positive number. If there is no asymptotic
arbitrage, then

ᾱ(n) ≈ 0, (25)

or, equivalently,

α(n) ≈ (In − ρ(n)W (n))1n1 , n2
r + B(n)E[ g̃]. (26)

The approximation (25) holds in the sense that for any δ > 0
there exists a constant Nδ > 0 such thatN(n , δ) < Nδ for all
n, where N(n , δ) denotes the number of components of ᾱ(n)
whose absolute values are greater than δ.

Proof. See E-companion EC.3.1. �

The intuition behind the theorem is that if g̃ are the
payoffs of zero-cost portfolios, then, by (22), one can
construct zero-cost portfolios with payoffs ᾱ(n) + ε̃(n)
that do not carry systematic risk. If the elements of
ε̃(n) are uncorrelated and have bounded variance, then
ᾱ(n) must be approximately zero; otherwise, one could
construct a large zero-cost portfolio with a payoff
whose mean would be strictly positive while its vari-
ance would vanish, constituting an asymptotic arbi-
trage opportunity.

4.3. The Spatial Arbitrage Pricing Theory:
The General Case

Theorem 3 (S-APT with Both Ordinary Assets and Fu-
tures). Suppose that in the nth economy there are n1
ordinary risky assets and n2 futures contracts, and the
n1 ordinary asset returns and the n2 futures returns are
generated by the model (19). If there is no asymptotic
arbitrage opportunity, then there is a sequence of factor

premiums λ(n) � (λ(n)1 , . . . , λ(n)K )′ and a constant λ
(n)
0 , which

price all assets approximately:

α(n) ≈ (In − ρ(n)W (n))1n1 , n2
λ(n)0 + B(n)λ(n). (27)

The precise meaning of the approximation in (27) is that
there exists a positive number A such that the weighted sum
of the squared pricing errors is uniformly bounded,

(U (n))′(V (n))−1U (n) ≤ A <∞ for all n , (28)

where

U (n) � α(n) − (In − ρ(n)W (n))1n1 , n2
λ(n)0 − B(n)λ(n). (29)

In particular, if there exists a risk-free return r, then λ(n)0 can
be identified as r.

Proof. See E-companion EC.3.2. �

Comparing (26) and (27), one can see that the factor
risk premiums λ(n) in the S-APT can be identified as

λ(n) � E[ g̃], (30)

if f̃ � g̃−E[ g̃] and g̃ are the payoffs of zero-cost traded
portfolios. The S-APT implies that the degree of spa-
tial interaction affects asset risk premiums. Indeed, let
(β̄(n)i , 1 , β̄

(n)
i , 2 , . . . , β̄

(n)
i ,K) be the ith row of (In−ρ(n)W (n))−1B(n).

Then, (27) implies that the ordinary assets are approx-
imately priced by

E[r(n)i ] − λ
(n)
0 ≈

K∑
k�1

β̄(n)i , kλ
(n)
k , i � 1, . . . , n1 (31)

and that the futures contracts are approximately
priced by

E[F(n)i , 1 ] − F(n)i , 0

F(n)i , 0

≈
K∑

k�1
β̄(n)n1+i , kλ

(n)
k , i � 1, . . . , n2. (32)

Equations (31) and (32) show that the expected returns
of both ordinary assets and futures contracts are
affected by the spatial interaction parameter ρ because,
for all j and k, β̄(n)j, k depends on the spatial interaction
terms ρ(n) and W (n).

4.4. Comparison with the Spatial
Autoregressive Model

The spatial autoregressive (SAR) model (see, e.g.,
Lesage and Pace 2009, Chap. 2.6) is one of the most
commonly adopted models in the spatial econometrics
literature.10 The SAR model postulates that the depen-
dent variables (usually prices or log prices of assets)
y1 , . . . , yn are generated by

yi � ρ
n∑

j�1
wi j y j + β0 +

K∑
k�1

βk xik + εi , i � 1, . . . , n , (33)
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where ρ, wi j , and εi have the same meaning as
in (5); xik are explanatory variables; β0 is the intercept;
and β1 , . . . , βK are coefficients in front of explanatory
variables.
Although the first term in (33) of the SAR model is

the same as the first term of the S-APT model (16),
there are substantial differences between the two: (i) In
terms of model specification, the S-APT imposes a lin-
ear constraint onmodel parameters ((26) or (27)), while
the parameters in the SAR model are free parameters.
(ii) The S-APT model is a common factor model, but
the SAR model is an individual factor model. In the
SAR model (33), the factors xik are individual factors
that may be different for different i, but the intercept β0
and factor loading βk are the same for different i. By
contrast, in the S-APT model (16), the factors fk are
common factors that are the same for different i, but
the intercepts αi and the factor loadings βik are differ-
ent for different i.

5. Statistical Inference for S-APT
Let r̃t � (r1t , r2t , . . . , rnt)′ be the observation of n �

n1 + n2 asset returns that consist of n1 ordinary asset
returns and n2 futures returns in the tth period. Let r f t
be the risk-free return in the tth period. Let ỹt �

(y1t , y2t , . . . , ynt)′ :� r̃t − r f t1n1 , n2
denote the excess asset

returns. Let g̃t � (g1t , g2t , . . . , gKt)′ be the observation
of the k factors in the tth period (note that E[ g̃t] may
not be zero).
Assume ỹt and g̃t are generated by the follow-

ing panel data model, a multiperiod version of the
model (22):

ỹt � ρW ỹt + ᾱ+ Bg̃t + ε̃t , t � 1, 2, . . . ,T,
( ỹt , g̃t), t � 1, 2, . . . ,T, are i.i.d.,

ε̃t | g̃t ∼N(0, σ2In).
(34)

The model (34) incorporates three features: (i) a spatial
lag in the dependent variables, (ii) individual-specific
fixed effects, and (iii) heterogeneity of factor loadings
on common factors. However, existing models have
as yet incorporated only some but not all these fea-
tures. Lee and Yu (2010a) investigate the asymptotic
properties of the quasi-maximum likelihood estimates
(QMLEs) for spatial panel data models that incorpo-
rate the features (i) and (ii) but not (iii), and Holly
et al. (2010) and Pesaran and Tosetti (2011) consider
panel data models that incorporate spatially correlated
cross-section errors and the features (ii) and (iii) but
not (i); see Anselin et al. (2008) and Lee and Yu (2010b)
for more comprehensive discussions of spatial panel
data models and the asymptotic properties of MLE and
QMLE for these models.
For brevity of notation, we define

b :�
(
ᾱ1 , β11 , β12 , . . . , β1K , . . . , ᾱn ,

βn1 , βn2 , . . . , βnK

) ′
, (35)

where βik is the (i , k) element of B. Denote the param-
eter vector of the model as θ :� (ρ, b′, σ2)′. Let θ0 �

(ρ0 , b′0 , σ
2
0)′ be the true model parameters.

Following Manski (1995), we study both the identi-
fication and the statistical inference problems for the
proposed spatial econometric model. Manski (1995,
p. 4) points out that “it is useful to separate the
inferential problem into statistical and identification
components. Studies of identification seek to charac-
terize the conclusions that could be drawn if one could
use the sampling process to obtain an unlimited num-
ber of observations.” Furthermore, Manski (1995, p. 6)
emphasizes that “the study of identification logically
comes first” because “negative identification findings
imply that statistical inference is fruitless: it makes no
sense to try to use a sample of finite size to infer some-
thing that could not be learned even if a sample of infi-
nite size were available.” In our S-APT model in (34), it
is not apparent whether all components of the param-
eters θ are identifiable given the observation ( ỹt , g̃t),
t �1, . . . ,T; hence, wewill first clarify the identifiability
issue in Section 5.1.

5.1. Identifiability of Model Parameters
The model parameters θ0 are identifiable11 if the spa-
tial weight matrix W is regular (i.e., satisfying sim-
ple regularity conditions that are easy to check); see
E-companion EC.4.1 for detailed discussion. It can be
easily checked that in all empirical examples of this
paper, W is regular. In the rest of the section, we
assume that W is regular, and hence θ0 is identifiable.12

5.2. Model Parameter Estimation
The model parameters can be estimated by conditional
MLE. Let

Xt :�
©«

1, g1t , . . . , gKt 0 0

0
. . . 0

0 0 1, g1t , . . . , gKt

ª®®®¬
∈ �n×n(K+1). (36)

Then, the conditional log-likelihood function of the
model is given by

`(θ)� `(ρ, b , σ2) :�
T∑

t�1
l( ỹt | g̃t , θ), where (37)

l( ỹt | g̃t , θ)

�−n
2 log(2πσ2)+ 1

2 log(det((In − ρW ′)(In − ρW)))

− 1
2σ2 ( ỹt − ρW ỹt −Xt b)′( ỹt − ρW ỹt −Xt b). (38)

The likelihood defined in (37) is a conditional likeli-
hood. In the S-APT model specified in (34), we observe
( ỹt , g̃t), t � 1, . . . ,T, and we would like to estimate the
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parameter θ, which only affects the conditional dis-
tribution of ỹt given g̃t . The S-APT model specifies
the conditional distribution of ỹt given g̃t but not the
marginal distribution of g̃t , which is not of interest in
our problem. Hence, we adopt the conditional maxi-
mum likelihood method.
Let [ζ, γ] be an interval such that ζ < 0 < γ and

In − ρW is invertible for ρ ∈ [ζ, γ].13 It can be shown14

that the conditional MLE θ̂ � (ρ̂, b̂
′
, σ̂2)′ is given by

ρ̂ � arg max
ρ∈[ζ, γ]

`c(ρ), b̂ � b(ρ̂), σ̂2
� s(ρ̂),

where

`c(ρ) :� `(ρ, b(ρ), s(ρ))

� −nT
2 log(2πs(ρ))

+
T
2 log(det((In − ρW ′)(In − ρW))) − nT

2 , (39)

b(ρ) :�
( T∑

t�1
X′t Xt

)−1 T∑
t�1

X′t(In − ρW) ỹt ,

s(ρ) :� 1
nT

T∑
t�1
((In − ρW) ỹt −Xt b(ρ))′

· ((In − ρW) ỹt −Xt b(ρ)).
Although we use the conditional MLE, Theo-

rem EC.2 in E-companion EC.4.2 shows that the
conditional MLE estimates have consistency and
asymptotic normality; in addition, the simulation stud-
ies in E-companion EC.4.2 show that the conditional
MLE achieves accurate estimation results.15

5.3. Hypothesis Test and Goodness of
Fit of the Model (34)

For simplicity, we assume that the factors g̃ are the pay-
offs of zero-cost tradable portfolios. In this case, Theo-
rem 2 shows that the S-APT imposes an approximate
zero-intercept constraint ᾱ(n) ≈ 0 (see Equation (25)).
As in the classical factor pricing literature, we test the
S-APT by testing the exact zero-intercept constraint,

H0: ᾱ0 � 0; H1: ᾱ0 , 0, (40)

where ᾱ0 is the true parameter in the model (34).
We can test the hypothesis using conditional likeli-

hood ratio test statistics. Under the null hypothesis, the
conditional likelihood ratio test statistic

LR � 2
[ T∑

t�1
l( ỹt | g̃t , θ̂) −

T∑
t�1

l( ỹt | g̃t , θ
∗)
]

(41)

has an asymptotic χ2(n) distribution.16 Here,∑T
t�1 l( ỹt | g̃t , θ̂) denotes the conditional log-likelihood

function evaluated at θ̂, which is the conditional MLE
of parameters estimated with no constraints, while∑T

t�1 l( ỹt | g̃t , θ
∗) is its counterpart evaluated at the con-

ditionalMLE θ∗ estimated under the constraint that the
null holds (i.e., ᾱ0 � 0). The conditional likelihood ratio
test is asymptotically equivalent to the traditional tests

in asset pricing, such as the Gibbons-Ross-Shanken
test; see Gibbons et al. (1989) aswell as Chapters 1 and 2
in Hayashi (2000).

The goodness of fit of the model can be evaluated by
adjusted R2. The theoretical adjusted R2 of the ith asset
in the model (34) is defined as

R2
i � 1− T − 1

T −K − 1
Var(εi)
Var(yi)

, i � 1, 2, . . . , n , (42)

where Var(εi)� σ2
0 , and Var(yi) is equal to the ith diag-

onal element of the covariance matrix (In − ρ0W)−1B0 ·
Cov( g̃) · B′0(In − ρ0W ′)−1 + σ2

0(In − ρ0W)−1(In − ρ0W ′)−1.
The sample adjusted R2 of the ith asset is calculated
using (42) with Var(εi) and Var(yi) replaced by their
respective sample counterparts.

For a simulation study of the likelihood ratio test and
the adjusted R2, see E-companion EC.4.3.

6. Application 1: Eurozone Stock Indices
In this section, we continue to study factor models
for European stock indices returns17 considered in the
motivating example in Section 2.1.

6.1. The Data
The data of the European stock indices returns are the
same as those used in Section 2.1. We take four factors
used in Fama and French (2012)—namely, the market
factor (MKT), the size factor (SMB), the value factor
(HML), and the momentum factor (MOM). The factors
aforementioned have long been documented in the lit-
erature to account for the majority of comovements of
equities returns. By including these four factors in the
S-APT model, the empirical study is designed to more
clearly reveal the contribution of spatial interaction in
relation to what has been understood in the litera-
ture. Since the returns in Fama and French (2012) are
sorted by corporate characteristics, while here stocks
are implicitly sorted by locations/nations, one may
expect some additional factors.We construct a new risk
factor that is related to sovereign credit risk. Table EC.3
in E-companion EC.5 shows the S&P credit ratings of
the 11 countries during 2001–2013, where it can be
seen that Germany is the only country that has main-
tained top-notch AAA rating, while Greece, Ireland,
Italy, Portugal, and Spain are the only countries that
were ever rated BBB+ or below during that period.
Thus, we introduce the credit factor as the difference
between the return of stock index of Germany and
the average returns of indices of Greece, Ireland, Italy,
Portugal, and Spain:

gcredit :� rGermany

− 1
5 (rGreece+ rIreland+ rItaly+ rPortugal+ rSpain). (43)

Similar to the value factor constructed in Fama and
French (1993), which is a proxy for the distress fac-
tor in the corporate domain, the risk factor (43) may
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be considered as a proxy of the sovereign version of
distress risk.

6.2. Empirical Performance of S-APT and
APT Models

We investigate the performance of the following six
APT models and their S-APT counterparts:

• Model 1: APT with MKT, SMB, HML, and MOM
factors (Fama and French 2012)

• Model 2: APT with MKT, SMB, HML, MOM, and
credit factors

• Model 3: APTwithMKT,MOM, and credit factors
• Model 4: APT with MKT, SMB, MOM, and credit

factors
• Model 5: APT with MKT, HML, MOM, and credit

factors
• Model 6: APT with MKT, SMB, HML, and credit

factors
• Model 1s: S-APT with MKT, SMB, HML, and

MOM factors
• Model 2s: S-APT with MKT, SMB, HML, MOM,

and credit factors
• Model 3s: S-APT with MKT, MOM, and credit

factors
• Model 4s: S-APT with MKT, SMB, MOM, and

credit factors
• Model 5s: S-APT with MKT, HML, MOM, and

credit factors
• Model 6s: S-APT with MKT, SMB, HML, and

credit factors
An “APT” model denotes the type of factor model
considered in Fama and French (2012) in which het-
erogeneous variances of residuals for different returns
are assumed. Model 1 is the same as the model spec-
ified in the motivating example in Section 2.1. The
S-APT model is specified in (34) with homogeneous

Table 3. The p-Value for Testing the No Asymptotic Arbitrage (i.e., Zero-Intercept) Hypothesis, the AIC, the Number of
Parameters, the 95% C.I. of ρ0 (Only for the S-APT Models), and the 95% C.I. of κ Defined in (2) for the Residuals of
Different Models for the Eurozone Stock Indices Returns

Model: 1 2 3 4 5 6

p-value 0.0 0.0 0.0002 0.0005 0.0 0.0
AIC 10,150 9,841 10,048 9,955 9,939 9,889
Number of 66 77 55 66 66 66

parameters
95% C.I. of κ [0.02, 0.21] [−0.05, 0.14] [−0.01, 0.18] [0.01, 0.20] [−0.08, 0.12] [−0.04, 0.15]
for residuals

Model: 1s 2s 3s 4s 5s 6s

p-value 0.0002 0.0099 0.1854 0.2912 0.0078 0.0002
AIC 8,826 8,625 8,793 8,730 8,696 8,668
Number of 57 68 46 57 57 57
parameters

95% C.I. of ρ0 [0.06, 0.25] [−0.01, 0.18] [0.01, 0.19] [0.03, 0.21] [−0.04, 0.16] [0.01, 0.19]
95% C.I. of κ [−0.08, 0.12] [−0.09, 0.11] [−0.09, 0.11] [−0.08, 0.11] [−0.10, 0.10] [−0.09, 0.11]
for residuals

Note. Models 3s and 4s (values in bold) appear to perform better than the other models.

variances for residuals. In the S-APT models, the spa-
tial weight matrix W is defined as Wi j :� (si di j)−1 for
i , j and Wii � 0, where di j is the driving distance
between the capital of country i and that of country j
and si :�∑

j d−1
i j .

The no asymptotic arbitrage (i.e., zero-intercept)
hypothesis test for the APT models is specified in (3),
and that for the S-APT models is specified in (40).
Table 3 shows the p-value for testing the zero-intercept
hypothesis, the number of parameters, the AIC, the
95% confidence interval (C.I.) of ρ0 (only for the S-APT
models), and the 95% C.I. of κ defined in Equation (2)
for the residuals for all the above models. The domain
of ρ0 and κ in the conditional MLE estimation is
[−2.5342, 1]. The only models that are not rejected in
the test of zero-intercept hypothesis are Models 3s
and 4s (values in bold in the table), which incorpo-
rate spatial interaction. Models 3s and 4s also have
better performance than the APT models in terms
of AIC. In general, the S-APT models seem to elim-
inate the spatial correlation among regression resid-
uals more effectively than the APT models, as indi-
cated by κ. Furthermore, for all the S-APT models that
are not rejected (Models 3s and 4s), ρ0 are found to
be significantly positive. Note that adding the spatial
term seems to improve the p-value and the AIC of its
counterpart model without the spatial term. While the
credit, MOM, and SMB factors all seem to play a role
in explaining return comovements, adding the HML
factor in the model does not seem to improve model
performance in terms of p-value andAIC. The adjusted
R2 of fittingModel 4s with the zero-intercept constraint
is reported in Figure 2. The estimates of the parameters
of S-APT Model 4s are reported in E-companion EC.5.

Besides the AIC and adjusted R2 above, we also
perform diagnostics of residuals of S-APT Model 4s:
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Table 4. The Top Matrix Is the Sample Correlation Matrix of the Eurozone Stock Indices Returns ỹt in (34); the Bottom One
Is That of the Residuals ε̃t in (34) for S-APT Model 4s

Austria Belgium Finland France Germany Greece Ireland Italy Netherlands Portugal Spain

Austria 1.0000
Belgium 0.8639∗∗ 1.0000
Finland 0.6165∗∗ 0.6834∗∗ 1.0000
France 0.8004∗∗ 0.8998∗∗ 0.8151∗∗ 1.0000
Germany 0.7388∗∗ 0.8417∗∗ 0.7575∗∗ 0.9448∗∗ 1.0000
Greece 0.7827∗∗ 0.7760∗∗ 0.6605∗∗ 0.7891∗∗ 0.7528∗∗ 1.0000
Ireland 0.7808∗∗ 0.8216∗∗ 0.6736∗∗ 0.8111∗∗ 0.7785∗∗ 0.6726∗∗ 1.0000
Italy 0.7947∗∗ 0.8662∗∗ 0.7682∗∗ 0.9403∗∗ 0.8788∗∗ 0.8352∗∗ 0.7854∗∗ 1.0000
Netherlands 0.8001∗∗ 0.8920∗∗ 0.7581∗∗ 0.9389∗∗ 0.9120∗∗ 0.7556∗∗ 0.8176∗∗ 0.8806∗∗ 1.0000
Portugal 0.7848∗∗ 0.8444∗∗ 0.6883∗∗ 0.8483∗∗ 0.7725∗∗ 0.7705∗∗ 0.7292∗∗ 0.8513∗∗ 0.7992∗∗ 1.0000
Spain 0.7561∗∗ 0.8309∗∗ 0.6980∗∗ 0.8984∗∗ 0.8325∗∗ 0.8182∗∗ 0.7306∗∗ 0.9128∗∗ 0.8382∗∗ 0.8416∗∗ 1.0000

Austria 1.0000
Belgium 0.2981∗∗ 1.0000
Finland −0.2298∗∗ −0.2963∗∗ 1.0000
France −0.0733 0.0571 0.1132 1.0000
Germany −0.0504 0.0185 −0.2069∗ 0.2467∗∗ 1.0000
Greece 0.1406 −0.0335 −0.0423 0.0377 0.6520∗∗ 1.0000
Ireland 0.0650 0.0817 −0.0699 −0.1337 0.0305 −0.2962∗∗ 1.0000
Italy −0.0563 −0.0574 −0.0477 0.3498∗∗ 0.4636∗∗ 0.1401 −0.1723 1.0000
Netherlands 0.0106 0.1220 −0.1002 0.0566 −0.0702 −0.0283 0.0677 −0.0532 1.0000
Portugal −0.0119 0.1384 −0.0673 0.1704 0.2954∗∗ −0.0871 −0.2120∗ 0.0201 −0.0723 1.0000
Spain −0.0956 −0.0610 −0.2250∗∗ 0.2179∗ 0.5114∗∗ 0.1489 −0.2553∗∗ 0.2237∗∗ −0.0480 0.0546 1.0000

Note. It seems that S-APT Model 4s is effective in eliminating cross-sectional correlations.
∗Indicates 95% significance; ∗∗indicates 99% significance.

(1) Table 4 shows the correlation matrix of the stock
indices returns ỹt in (34) and that of the residu-
als ε̃t in (34) for S-APT Model 4s. It seems that S-APT
Model 4s is effective in eliminating cross-sectional corre-
lations. (2) Table 5 shows the sample autocorrelation

Table 5. The Top Matrix Shows the Sample ACFs for Lags Up to 5 of the Eurozone Stock Indices Returns ỹt
in (34); the Bottom One Shows Those of the Residuals ε̃t in (34) for S-APT Model 4s

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

Austria 0.2490∗∗ 0.1165 0.1129 0.0773 −0.0968
Belgium 0.2271∗∗ −0.0111 0.0397 0.1806 0.0541
Finland 0.2050∗ −0.1635∗ 0.0170 0.0129 0.0096
France 0.0893 −0.0691 0.0818 0.1158 −0.0303
Germany 0.0878 −0.0922 0.0848 0.0477 0.0060
Greece 0.1551 −0.0015 0.1864∗ 0.0202 −0.0067
Ireland 0.2414∗∗ 0.0962 0.1568 0.1741∗ 0.0115
Italy 0.0847 −0.1293 0.1603∗ 0.1413 −0.0847
Netherlands 0.1077 −0.0053 0.0844 0.0705 −0.0151
Portugal 0.2097∗∗ −0.0324 0.1170 0.1706∗ 0.0116
Spain 0.0588 −0.0583 0.1280 0.0342 −0.0646

Austria −0.0325 0.0141 0.0435 −0.0062 0.0629
Belgium 0.0584 −0.3186∗∗ −0.1727 0.1005 0.0875
Finland 0.1814∗ −0.2197∗∗ −0.1779∗ −0.1414 0.0139
France −0.1191 0.0783 −0.0218 −0.0211 −0.0588
Germany 0.0495 −0.1382 0.1311 −0.0329 0.0405
Greece −0.0624 −0.0736 0.1461 −0.0038 0.0132
Ireland 0.0146 0.0982 0.0760 0.0168 0.1248
Italy −0.1313 −0.1108 0.0992 −0.0720 0.0862
Netherlands −0.0575 −0.0830 −0.0282 −0.3092∗∗ −0.0409
Portugal 0.0638 −0.0833 −0.0148 −0.0723 0.0620
Spain −0.0453 −0.0221 0.1016 −0.0371 −0.0195

Note. It seems that S-APT Model 4s is effective in reducing the autocorrelations in ỹt .
∗Indicates 95% significance; ∗∗indicates 99% significance.

functions (ACFs) of ỹt and that of ε̃t of S-APTModel 4s.
It seems that S-APTModel 4s is effective in reducing the
autocorrelations in ỹt . (3) Table 6 shows the p-values of
the Kolmogorov–Smirnov test for normal distribution
of the residuals ε̃t of S-APT Model 4s. The hypothesis
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Table 6. p-Values of Kolmogorov–Smirnov Test for the Normal Distribution of the Residuals ε̃t in (34) for S-APT Model 4s
for the Eurozone Stock Indices Returns

Country: Austria Belgium Finland France Germany Greece Ireland Italy Netherlands Portugal Spain

p-value 0.5339 0.4355 0.0338∗ 0.5775 0.8218 0.6697 0.9327 0.5062 0.9805 0.8728 0.8680

Notes. Low p-values (lower than 5%) are marked with asterisks. The hypothesis that the residuals have normal distributions is rejected only
for 1 of 11 indices returns.

that the residuals have normal distributions is rejected
at the 5% level only for 1 of 11 stock indices returns.

6.3. Robustness Check
The empirical results reported above seem to be
robust with respect to different specifications of spa-
tial matrix W . In Table 7 we compare the estimation
and testing results using two definitions of W in S-APT
Model 4s. The first is Wi j :� (si di j)−1, where di j is the
geographic distance18 between the capital of the ith
country and that of the jth country, and si :�∑

j,i d−1
i j . In

this case, the domain of ρ0 in conditional MLE estima-
tion is [−2.6399, 1]. The second is Wi j :� (si di j)−1, and di j
is the driving distance. The numerical values of W can
be found in E-companion EC.5.

Table 7. Robustness Check: The Estimation and Testing Results Under Different Definitions of Spatial Weight Matrix W for
S-APT Model 4s for the Eurozone Stock Indices Returns

Adjusted R2

p-value for
W testing ᾱ0 � 0 C.I. of ρ0 Austria Belgium Finland France Germany

Geographic distance 0.2866 [0.022, 0.204] 0.8404 0.7756 0.8676 0.7858 0.8304
Driving distance 0.2912 [0.026, 0.208] 0.8405 0.7757 0.8677 0.7859 0.8305

Adjusted R2

W AIC Greece Ireland Italy Netherlands Portugal Spain

Geographic distance 8,731 0.9006 0.7950 0.8345 0.8041 0.7698 0.8296
Driving distance 8,730 0.9006 0.7951 0.8346 0.8042 0.7699 0.8296

Table 8. Robustness Check for Empirical Results of European Stock Index Returns: The Estimation and Testing Results
Under Four Different Definitions of the Credit Factor for S-APT Model 4s

Adjusted R2

Definition p-value for
of gcredit testing ᾱ0 � 0 C.I. of ρ0 Austria Belgium Finland France Germany

1 0.2912 [0.026, 0.208] 0.8405 0.7757 0.8677 0.7859 0.8305
2 0.0652 [0.117, 0.287] 0.8537 0.7942 0.8786 0.8036 0.8445
3 0.1549 [0.025, 0.203] 0.8593 0.8021 0.8833 0.8111 0.8504
4 0.1426 [0.009, 0.189] 0.8535 0.7940 0.8785 0.8034 0.8443

Adjusted R2

Definition
of gcredit AIC Greece Ireland Italy Netherlands Portugal Spain

1 8,730 0.9006 0.7951 0.8346 0.8042 0.7699 0.8296
2 8,585 0.9088 0.8120 0.8482 0.8203 0.7889 0.8437
3 8,515 0.9123 0.8193 0.8541 0.8272 0.7970 0.8497
4 8,582 0.9087 0.8119 0.8481 0.8202 0.7887 0.8435

Notes. The spatial weight matrix W is defined by driving distance. There does not seem to be significant differences in the empirical results.

The empirical results reported above also seem to
be robust with respect to the specification of the credit
factor. We consider the following four alternative defi-
nitions of the credit factor:

• Definition 1: gcredit :� rGermany − 1
5 (rGreece + rIreland +

rItaly+ rPortugal+ rSpain) (the definition used in Section 6.2).
• Definition2: gcredit :� 1

2 (rGermany+ rFinland)− 1
5 (rGreece+

rIreland + rItaly + rPortugal + rSpain).
• Definition 3: gcredit :� rGermany − rGreece.
• Definition 4: gcredit :� rGermany − 1

2 (rGreece + rSpain).
Table 8 shows that the estimation and testing

results for fitting S-APT Model 4s to the stock indices
returns under the four definitions of credit factor are
similar.
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Figure 2. The Adjusted R2 of Fitting Model 4s with the Zero-Intercept Constraint to the Eurozone Stock Indices

Austria: 0.84

Belgium: 0.78

Finland: 0.87

France: 0.79

Germany: 0.83

Greece: 0.90

Ireland: 0.80

Italy: 0.83

Netherlands: 0.80

Portugal: 0.77

Spain: 0.83

7. Application 2: S&P/Case–Shiller Home
Price Indices Futures

7.1. Data
The CSI Indices are constructed based on the method
proposed by Case and Shiller (1987) and are the
leading measure of single family home prices in the
United States. The CSI index family includes 20 in-
dices for 20 metropolitan statistical areas (MSAs)
and three composite indices (National, 10-City, and
20-City). The indices are updated monthly, except for
the national index, which is updated quarterly. The
CSI Indices themselves are not directly traded; how-
ever, CSI Indices futures are traded at the ChicagoMer-
cantile Exchange. There are, in total, 11 CSI Indices
futures contracts; 1 is written on the composite 10-City
CSI Index and the other 10 are on the CSI Indices
of 10 MSAs: Boston, Chicago, Denver, Las Vegas, Los
Angeles, Miami, New York, San Diego, San Francisco,
and Washington, DC. On any given day, the futures
contract with the nearest maturity among all the
traded futures contracts is called the first nearest-to-
maturity contract. In the empirical study, we use the
first nearest-to-maturity futures contract to define one-
month return of futures because this contract usually
has better liquidity than the others. The time period of
the data is from June 2006 to February 2014.
We consider three factors for the CSI Indices futures.

First, we construct a factor related to credit risk, as the

credit risk may be a proxy of the risk of public finance
(e.g., state pension schemes, infrastructure improve-
ments). Table EC.4 in E-companion EC.5 shows the
S&P credit ratings of the states where the 10 MSAs are
located during 2006–2013. It can be seen that the credit
rating of California is significantlyworse than the other
states, while Florida and Nevada can be chosen as rep-
resentatives of states of good credit quality, as both of
them have a rating as good as AA+ for at least five
years during the period. Following the approach of
Fama and French (1993), we construct a factor related to
credit risk as the difference of futures returns of MSAs
in the states with relatively bad credit and those with
relatively good credit:

gcredit :� rLosAngeles + rSanDiego + rSanFrancisco
− (rMiami + rLasVegas), (44)

where r denotes the return of CSI index futures of a
particular MSA (in subscript). In addition to the credit
factor, we consider two other factors: (i) gCS10 f ., the
monthly return of futures on S&P/Case–Shiller com-
posite 10-City Index, which reflects the overall national
residential real estate market in the United States; and
(ii) gCS10 f Tr, the trend factor of gCS10 f .

Factor gCS10 f Tr in the kth month is the difference
between gCS10 f in the kth month and the previous
12-month average of gCS10 f .19 The trend factor gCS10 f Tr
is inspired by a similar creation in Duan et al. (2012)
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and can be related to the notion of momentum cap-
tured by the momentum factor in Fama and French
(2012). The trend factor describes the intertemporal
momentum while the momentum factor focuses more
on cross-sectional differences.

7.2. Empirical Performance of S-APT and
APT Models

We estimate and test three models using the same
three factors defined above: one is the S-APT model
specified in (34), which assumes homogeneous vari-
ance for residuals, and the other two are APT models,
which are specified with homogeneous and hetero-
geneous residual variances, respectively. APT models
with heterogeneous variances seem to be common in
existing theoretical and empirical works; see Gibbons
et al. (1989) and Fama and French (1993, 2012), among
others. In the S-APT model, the spatial weight matrix
W is specified based on driving distances in the same
way as in Section 6.2.
We carry out the model fitting and the no asymp-

totic arbitrage (i.e., zero-intercept) test for the APT
and S-APT models. The zero-intercept test for the APT
models is specified in (3), and that for the S-APT mod-
els is specified in (40). Table 9 shows the estimation
and testing results for the three models. The domain
of ρ0 in the conditional MLE estimation for the S-APT
model is [−2.0334, 1]. First, in testing the zero-intercept
hypothesis, the S-APT model is not rejected. Second,
the S-APT model outperforms the other two mod-
els in terms of AIC; in particular, the S-APT model
achieves lower AIC than the APT model with homo-
geneous variances. Hence, incorporating spatial inter-
action improves the description of the comovements of
futures returns. Third, for the S-APTmodel, ρ0 is found
to be significantly positive. Fourth, there seems to be
no spatial correlation among the residuals of the S-APT
model, but there is significantly positive spatial corre-
lation among the residuals of the two APTmodels. The
estimates of the parameters of the S-APT model are
reported in E-companion EC.5.
Figure 3(a) shows the sample adjusted R2 of the

S-APT model with the zero-intercept constraint ᾱ0 � 0.

Table 9. The p-Value for Testing the No Asymptotic Arbitrage (i.e., Zero-Intercept)
Constraint, AIC, the Number of Parameters, the 95% C.I. of ρ0 (Only for S-APT), and
the 95% C.I. of κ Defined in (2) for the Residuals of the Three Models

APT APT
(heterogeneous (homogeneous

Model S-APT variance) variances)

p-value 0.1023 0.2095 0.0659
AIC 3,048 4,023 4,034
Number of parameters 42 50 41
95% C.I. of ρ0 [0.29, 0.45] — —
95% C.I. of κ for residuals [−0.10, 0.10] [0.30, 0.45] [0.30, 0.45]

All the sample adjusted R2 values are positive except
that of NewYork, which is−0.39. The negative adjusted
R2 may be because the CSI Index of New York does
not reflect the overall real estate market in that area,
as it takes into account only single-family home prices
but not co-op or condominium prices; however, sales
of co-ops and condominiums account for 98% of Man-
hattan’s nonrental properties.20 Therefore, we exclude
the CSI Indices futures of New York from the analysis
and test the S-APT on the remaining nine CSI Indices
futures. The p-value of the test is 0.10, and hence the
S-APT model is not rejected. The sample adjusted R2

of fitting the remaining nine CSI Indices futures with
the S-APT zero-intercept constraint is shown in Fig-
ure 3(b); all the nine futures have positive adjusted R2

values. We estimate ρ0 to be 0.38 with the 95% confi-
dence interval [0.30, 0.46], which is significantly posi-
tive (the domain of ρ0 and κ in the conditional MLE
estimation is [−1.9897, 1]).
We also perform diagnostics of residuals of the

S-APTmodel: (1) Table 10 shows the correlation matrix
of the home price indices futures returns ỹt in (34) and
that of the residuals ε̃t in (34) for the S-APT model.
It seems that the S-APT model is effective in eliminat-
ing cross-sectional correlations. (2) Table 11 shows the
sample ACFs of ỹt and that of ε̃t of the S-APT model.
It seems that the S-APT model is effective in reducing
the autocorrelations in the data. (3) Table 12 shows the
p-values of Kolmogorov–Smirnov test for normal dis-
tribution of the residuals ε̃t of the S-APT model. The
hypothesis that the residuals have normal distributions
is rejected for none of the residuals.

7.3. Robustness Check
The empirical results reported above seem to be
robust with respect to different specifications of spa-
tial matrix W . Table 13 compares the model testing and
estimation results for W defined by geographic dis-
tance and driving distance. The table shows that the
results are robust to the specification of W . The numer-
ical values of W can be found in E-companion EC.5.

The empirical results reported above also seem to be
robust with respect to the specifications of the credit
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Figure 3. (a) Adjusted R2 of Fitting the Three-Factor Model (34) with the S-APT Zero-Intercept Constraint ᾱ0 � 0 to the
10 CSI Indices Futures Returns; (b) Adjusted R2 of the Same Model Fitting as in (a), Except That New York Is Excluded
from the Analysis

Note. In the model fitting, W is specified using driving distances.

factor. We consider the following four alternative defi-
nitions of the credit factor:

• Definition 1: gcredit :� rLosAngeles + rSanDiego +

rSanFrancisco−(rMiami+ rLasVegas) (the definition used in Sec-
tion 7.2).

• Definition 2: gcredit :� rLosAngeles + rSanDiego +

rSanFrancisco − rLasVegas.
• Definition 3: gcredit :� rLosAngeles + rSanFrancisco −

(rMiami + rLasVegas).
• Definition 4: gcredit :� rLosAngeles + rSanFrancisco−

rLasVegas.
Table 14 shows that the estimation and testing results

for fitting the S-APT model to the home price indices
futures returns under the four definitions of credit fac-
tor are similar.

8. Conclusion
Although there is growing evidence that spatial inter-
action plays a significant role in determining prices and
returns in both stock markets and real estate markets,
there is as yet little work that builds explicit economic
models to study the effects of spatial interaction on
asset returns. In this paper, we add to the literature by
studying how spatial interaction affects the risk-return
relationship of financial assets. To do this, we first pro-
pose new asset pricing models that incorporate spatial
interaction—i.e., S-CAPM, the spatial capital asset pric-
ingmodel, and S-APT, the spatial arbitrage pricing the-
ory, which extend the classical asset pricing theory of
CAPM and APT, respectively. The S-CAPM and S-APT
explicitly characterize the effect of spatial interaction
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Table 10. The Top Matrix Is the Sample Correlation Matrix of Home Price Indices Futures Returns ỹt in (34); the Bottom One
Is That of the Residuals ε̃t in (34) for the S-APT Model

Los Angeles San Diego San Francisco Denver Washington, DC Miami Chicago Boston Las Vegas New York

Los Angeles 1.0000
San Diego 0.5666∗∗ 1.0000
San Francisco 0.5881∗∗ 0.5812∗∗ 1.0000
Denver 0.5278∗∗ 0.2272∗ 0.4189∗∗ 1.0000
Washington, DC 0.5757∗∗ 0.3179∗∗ 0.5428∗∗ 0.5943∗∗ 1.0000
Miami 0.4210∗∗ 0.4217∗∗ 0.5342∗∗ 0.2414∗ 0.2059∗ 1.0000
Chicago 0.2918∗∗ 0.0524 0.3791∗∗ 0.3736∗∗ 0.3283∗∗ 0.4541∗∗ 1.0000
Boston 0.3152∗∗ 0.3011∗∗ 0.3801∗∗ 0.2877∗∗ 0.4573∗∗ 0.2443∗ 0.4839∗∗ 1.0000
Las Vegas 0.0953 0.1050 0.2655∗ 0.2569∗ −0.0072 0.3353∗∗ 0.2089∗ 0.0233 1.0000
New York 0.3133∗∗ 0.1928 0.3118∗∗ 0.2035 0.3068∗∗ 0.3242∗∗ 0.4732∗∗ 0.4514∗∗ −0.0322 1.0000

Los Angeles 1.0000
San Diego −0.4127∗∗ 1.0000
San Francisco −0.2532∗∗ 0.0308 1.0000
Denver 0.2770∗∗ −0.2416∗ −0.0446 1.0000
Washington, DC 0.1455 −0.2884∗∗ 0.0475 0.4059∗∗ 1.0000
Miami 0.2076 0.3773∗∗ 0.3794∗∗ −0.1537 −0.1998 1.0000
Chicago 0.0933 −0.1847 0.0962 0.0481 −0.0482 0.0653 1.0000
Boston −0.1439 0.0860 −0.0263 −0.0555 0.0175 −0.1279 0.1989 1.0000
Las Vegas 0.2025 0.2706 0.5012∗∗ 0.1645 0.0741 0.0904 −0.0687 −0.0373 1.0000
New York −0.0470 −0.0273 −0.1424 −0.2148∗ −0.3365∗∗ −0.0159 0.0789 −0.0964 −0.2467∗ 1.0000

Note. It seems that the S-APT model is effective in eliminating cross-sectional correlations.
∗Indicates 95% significance; ∗∗indicates 99% significance.

Table 11. The Top Matrix Shows the Sample ACFs for Lags Up to 5 of Home Price Indices Futures
Returns ỹt in (34); the Bottom One Shows Those of the Residuals ε̃t in (34) for the S-APT Model

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

Los Angeles 0.4796∗∗ 0.2223∗ 0.2049∗ 0.2190∗∗ 0.2550∗∗
San Diego 0.3647∗∗ 0.2391∗∗ 0.1812 0.2208∗∗ 0.1913
San Francisco 0.3498∗∗ 0.1462 0.0828 0.1045 0.0156
Denver 0.2825∗∗ 0.0634 −0.0468 −0.0476 −0.0866
Washington, DC 0.4082∗∗ 0.1241 0.1345 0.1452 0.1370
Miami 0.4774∗∗ 0.3413∗∗ 0.2772∗∗ 0.2399∗ 0.2156∗
Chicago 0.4531∗∗ 0.1985 0.0027 −0.1832 −0.3318∗∗
Boston 0.3004∗∗ −0.0125 −0.0853 −0.0828 −0.2338∗
Las Vegas 0.2615∗ 0.3319∗∗ 0.1071 0.1149 0.1799
New York 0.2882∗∗ 0.0638 −0.0441 0.0131 −0.1706

Los Angeles 0.1640 0.0316 0.0125 −0.1104 −0.1455
San Diego 0.1296 0.1165 0.0091 0.0375 −0.0993
San Francisco 0.0387 −0.1015 0.1234 −0.0049 −0.1963
Denver 0.1977 −0.0198 −0.1967 −0.0907 −0.0370
Washington, DC 0.0512 −0.1048 −0.0258 −0.0437 0.0788
Miami 0.4947∗∗ 0.3094∗∗ 0.2330∗ 0.1897 0.2595∗
Chicago 0.0407 −0.0239 0.0449 0.0498 −0.1704
Boston 0.1742 −0.0090 0.0610 −0.0009 0.1232
Las Vegas 0.2096 0.2143∗ −0.0646 −0.0632 0.0283
New York 0.2909∗∗ 0.1077 −0.0099 0.0994 −0.1423

Note. It seems that the S-APT model is effective in reducing the autocorrelations in the data.
∗Indicates 95% significance; ∗∗indicates 99% significance.

Table 12. p-Values of Kolmogorov–Smirnov Test for the Normal Distribution of the Residuals ε̃t in (34) for the S-APT Model
for the Home Price Indices Futures Returns

City: Los Angeles San Diego San Francisco Denver Washington, DC Miami Chicago Boston Las Vegas New York

p-value 0.4614 0.5159 0.5335 0.0772 0.1533 0.4049 0.7698 0.9164 0.1193 0.8592

Note. The hypothesis that the residuals have normal distributions is rejected for none of the futures returns.
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Table 13. Robustness Check of the Empirical Results for Different Definitions of W

(a) First robustness check: Different W for 10 MSAs including New York

Adjusted R2

p-value for
W testing ᾱ0 � 0 C.I. of ρ0 AIC Los Angeles San Diego San Francisco Denver Las Vegas

Geographic distance 0.1008 [0.2975, 0.4505] 3,045 0.4335 0.2119 0.5611 0.5604 0.5795
Driving distance 0.1023 [0.2910, 0.4450] 3,048 0.4332 0.2088 0.5593 0.5586 0.5778

Adjusted R2

W Washington, DC Miami Chicago Boston New York

Geographic distance 0.3853 0.1430 0.5619 0.2101 −0.3866
Driving distance 0.3828 0.1396 0.5602 0.2070 −0.3921

(b) Second robustness check: Different W for 9 MSAs excluding New York

Adjusted R2

p-value for
W testing ᾱ0 � 0 C.I. of ρ0 AIC Los Angeles San Diego San Francisco Denver Las Vegas

Geographic distance 0.1014 [0.3074, 0.4626] 2,780 0.4095 0.1757 0.5409 0.5401 0.5601
Driving distance 0.1018 [0.3009, 0.4571] 2,783 0.4070 0.1722 0.5390 0.5382 0.5583

Adjusted R2

W Washington, DC Miami Chicago Boston

Geographic distance 0.3570 0.1036 0.5417 0.1738
Driving distance 0.3543 0.0988 0.5398 0.1704

Table 14. Robustness Check for Empirical Results of Home Price Indices Futures Returns: The Estimation and Testing
Results Under Different Definitions of the Credit Factor

Adjusted R2

Definition p-value for
of gcredit testing ᾱ0 � 0 C.I. of ρ0 AIC Los Angeles San Diego San Francisco Denver Las Vegas

1 0.1023 [0.2910, 0.4450] 3,048 0.4332 0.2088 0.5593 0.5586 0.5778
2 0.0584 [0.2309, 0.3951] 3,058 0.4205 0.1911 0.5494 0.5487 0.5683
3 0.0640 [0.3381, 0.4839] 3,039 0.4427 0.2221 0.5667 0.5660 0.5849
4 0.0814 [0.2908, 0.4452] 3,048 0.4326 0.2079 0.5588 0.5581 0.5773

Adjusted R2

Definition
of gcredit Washington, DC Miami Chicago Boston New York

1 0.3828 0.1396 0.5602 0.2070 −0.3921
2 0.3690 0.1203 0.5503 0.1892 −0.4233
3 0.3932 0.1540 0.5675 0.2203 −0.3687
4 0.3822 0.1387 0.5597 0.2062 −0.3936

Notes. The spatial weight matrix is derived by driving distance. There does not seem to be significant differences in the empirical results.

on the expected returns of both ordinary assets and
future contracts. Next, we carry out empirical studies
on the eurozone stock indices and the futures contracts
on S&P/Case–Shiller Home Price Indices using the
S-APT model. Our empirical results suggest that spa-
tial interaction is not only present but also important
in explaining comovements of asset returns.
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Endnotes
1These factors are called the“Fama/FrenchEuropeanFactors,”which
can be downloaded at http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html#International (accessed Feb-
ruary 23, 2014). These factors are constructed from the stocks in
developed European countries including Austria, Belgium, Den-
mark, Finland, France, Germany, Greece, Ireland, Italy, the Nether-
lands, Norway, Portugal, Spain, Sweden, Switzerland, and theUnited
Kingdom. All these factors are based on U.S.-dollar-denominated
stock returns. The detailed description of these factors can be found
at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data
_Library/f-f_developed.html (accessed February 23, 2014).
2Using the term κW ε̃t to incorporate spatial interaction is proposed
in Whittle (1954) and has been widely used in spatial statistics and
spatial econometrics (see, e.g., Ord 1975, Cressie 1993, Lesage and
Pace 2009).
3The estimate and confidence interval for κ can be obtained by
letting K � 0 in Equations (36)–(39) and Equations (EC.79) and
(EC.80) in the e-companion.
4Let det( · ) denote the matrix determinant, and let ω1 , . . . , ωn be
the eigenvalues of W . Then, det(In − ρW)�∏n

j�1(1− ρω j), 0 if and
only if ρ−1 is not an eigenvalue of W .
5Since the aggregate position of all market participants in a futures
contract is zero, n1 needs to be positive in order to ensure that the
return of the market portfolio is well defined.
6The expression r̃− r1n1 , n2 is the excess returns of the n assets in the
sense that the first n1 elements of r̃ − r1n1 , n2 are the excess returns
of the n1 ordinary assets, and the last n2 elements of r̃ − r1n1 , n2
are the returns of the futures contracts, which can be viewed as
“excess returns” because futures returns are the payoffs of zero-cost
portfolios, just as are the excess returns of ordinary assets.
7A spatial lag CAPM equation, which is similar to (14) with ᾱ � 0
and considers only ordinary assets but not futures, is defined in
Fernandez (2011) without theoretical justification. By contrast, the
present paper rigorously proves that the S-CAPM relation (13) holds
(for both ordinary assets and futures) and that ᾱ must be 0 in the
spatial model (14) under the assumption in Theorem 1.
8 If there is a risk-free asset with return r, then a zero-cost portfolio
with dollar-valued positions h(n) in the risky assets must have a
dollar-valued position −(h(n))′1n1 , n2 in the risk-free asset. Then, the
payoff of the portfolio is given by (h(n))′(r̃(n) − r1n1 , n2 ).
9 In the case when there is a risk-free asset with return r, the term
(h(mk ))′ r̃(mk ) should be replaced by (h(mk ))′(r̃(mk ) − r1n1 , n2 ).
10The econometric analysis of the SAR model is discussed in Lee
(2004). Pace (2003) provides the Matlab toolbox for implementing
the SAR model.
11See, for example, Neway and McFadden (1994, Lemma 2.2) for
the definition of identifiability.
12 In fact, if W is not regular, then the elements of W satisfy
n(n + 1)/2 constraints given by (EC.32) and (EC.33) in E-compan-
ion EC.4.1; hence, unless W is carefully constructed to satisfy these
constraints, W is regular, and the (unknown) true parameter is
identifiable. For example, when W is not regular and n � 3, W has
six off-diagonal elements that satisfy six constraints; hence, only
very special W ’s are not regular.
13For any W , because limρ→0 det(In − ρW) � 1, there always exists
an interval [ζ, γ] such that ζ < 0 < γ and that In − ρW is invertible
for ρ ∈ [ζ, γ]. In fact, In − ρW is invertible if and only if ρ−1 is
not an eigenvalue of W (see Footnote 4). Hence, the specification
of [ζ, γ] depends on W : (i) If W has at least two different real

eigenvalues and ωmin < 0 < ωmax are the minimum and maximum
real eigenvalues, then [ζ, γ] can be chosen as an interval that lies
inside (ω−1

min , ω
−1
max). In particular, if the rows of W are normalized

to sum up to 1, which is commonly seen in spatial econometrics
literature, then ωmax � 1. (ii) If W does not have real eigenvalues,
then [ζ, γ] can be any interval containing 0. See Lesage and Pace
(2009, p. 88) for a more detailed discussion.
14Note that for any given ρ, the original model can be rewrit-
ten as ỹt − ρW ỹt � Xt b + ε̃t , t � 1, 2, . . . ,T, from which the clas-
sical theory of linear regression shows that b � b(ρ) and σ2 �

s(ρ) maximize the conditional log-likelihood function (37). Because
`c(ρ) � `(ρ, b(ρ), s(ρ)) and ρ̂ maximizes `c(ρ), it follows that ρ̂,
b̂ � b(ρ̂), and σ̂2 � s(ρ̂) maximize `(ρ, b , σ2); i.e., they are the condi-
tional MLE.
15See Campbell et al. (1996, Chap. 5.4) for more discussion on small
sample properties of estimates.
16This can be shown by verifying the conditions of Proposi-
tion 7.11 in Hayashi (2000, p. 494). Let a(θ) :� ᾱ. Then, the Jacobian
∂a(θ0)/∂θ′ is of full row rank. We then need to verify the conditions
of Proposition 7.9 in Hayashi (2000, p. 475), but it is done in the
proof of Theorem EC.2 in E-companion EC.4.2 of this paper.
17To test APT, Fama and French (2012) constructed 25 size–B/M
portfolios consisting of individual stocks in the region of Europe.
The monthly returns of the 25 size–B/M test portfolios, used in
the left-hand side of the regression, are formed by the intersection
of a sort on the size (market capitalization) of individual stocks
in the European region and a sort on the book equity-to-market
equity ratio of those stocks. As each of the 25 test portfolios may
include firms from different countries in the European region, it
may be difficult to characterize the “location” of each test portfolio,
and hence it is not clear how to define the spatial weight matrix
that describes the spatial interaction between the 25 test portfolios.
Therefore, the S-APT model may not be directly applicable to the
returns of the 25 test portfolios. However, for each test portfolio,
one may further divide it into subportfolios that only include firms
in a particular country; then, the location of such subportfolios
can be clearly identified. We can then use the returns of these
subportfolios as the left-hand asset returns in the S-APT model for
testing the model, although the sample sizes in the subportfolios
are much smaller. It would be interesting to see how the S-APT
model performs for these subportfolios; we will leave this for future
research.
18The geographic distance is calculated from the longitude and
latitude coordinates using the Vincenty’s formulae (Vincenty 1975),
which assumes that the figure of the earth is an oblate spheroid
instead of a sphere.
19When k ≤ 12, the trend factor for the kth month is defined as the
difference of gCS10 f in the kth month and the average of gCS10 f in
the previous k − 1 months, except for the first month (k � 1) where
the trend factor is set to be zero.
20We try to alleviate the problem by including a condominium
index return factor, but this does not improve the fitting results
much. As there are no futures contracts on the S&P/Case–Shiller
Condominium Index of New York, we construct a mimicking port-
folio of the excess return of the Condominium Index using the
linear projection of the Condominium Index excess return on the
payoff space spanned by the 10 CSI Indices futures returns. Then,
the payoff of the mimicking portfolio is defined as an additional
factor. However, the sample adjusted R2 of the linear projection is
merely 17%, indicating that the mimicking portfolio payoff may not
be a good approximation to the Condominium Index excess return.
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