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Abstract. The regulator is interested in proposing a capital adequacy test by specifying
an acceptance set for firms’ capital positions at the end of a given period. This set needs
to be surplus invariant; i.e., not to depend on the surplus of firms’ shareholders, because
the test means to protect firms’ liability holders. We prove that any surplus-invariant,
law-invariant, and conic acceptance set must be the set of capital positions whose value
at risk at a given level is less than zero. The result still holds if we replace conicity with
numéraire invariance, a property stipulating that whether a firm passes the test should
not depend on the currency used to denominate its assets.
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1. Introduction
Suppose a firm has initial capital c, debt d, and thus
asset value c + d at time 0. Suppose the firm invests its
assets in a portfolio that generates net random return R
in the period [0,T]. Suppose the firm needs to pay the
interest rd together with the face value d to the creditor
at time T, where r is the interest rate. Then, the profit
and loss (P&L) of the firm at the end of the period is
Y � (c+ d)R− rd. The Basel II Accord (Basel Committee
on Banking Supervision 2006, 2009) proposes a capital
adequacy test based on the P&L: the value at risk (VaR)
of the P&L at some confidence level, e.g., at 99%, is cal-
culated and then the firm is required to hold as much
capital as the amount of the VaR. Thus, if we denote
V@Rα(Y) as the α-level VaR of Y, then the firm’s posi-
tion is acceptable if and only if V@Rα(Y) 6 c, i.e., if and
only if V@Rα(X) 6 0, where X :� Y + c � (c + d)(R+ 1) −
(1+ r)d is the capital position of the firm, i.e., the firm’s
assets net of its liability, at the end of the period.
As in the Basel Accords, the regulator is interested

in proposing a capital adequacy test by specifying an
acceptance set for firms’ capital positions at the end of
a given period. If a firm does not pass the test, it can
(1) adjust its current portfolio, (2) inject new capital and
hold it as cash, and (3) inject new capital and invest
it in a portfolio. Then, the regulator can check if the
updated capital position is acceptable by performing
the capital adequacy test again.

The positive part of a firm’s capital position is the
surplus for the equity holders and the negative part is

defined as the option to default of the firm, which repre-
sents the portion of liabilities that is not paid off using
the firm’s assets. As argued by Staum (2013), Cont et al.
(2013), Koch-Medina et al. (2015, 2017), the main pur-
pose of a capital adequacy test is to protect liability
holders; hence, whether a firm’s capital position lies in
the acceptance set should depend on only the negative
part of the firm’s capital position but not the positive
part, a property referred to as surplus invariance.

In the present paper, we prove that surplus-invar-
iant, law-invariant, and conic acceptance sets must be
the sets induced by VaR, i.e., must be the set of capital
positions whose VaR at a given level is less than zero.
We assume neither convexity nor coherence, there-
fore the family of acceptance sets under our investiga-
tion include many that are not convex, such as those
induced by the natural risk statistics proposed by Kou
et al. (2013) and the distortion risk measures proposed
by Kou and Peng (2016). Therefore our result is differ-
ent from those in Koch-Medina et al. (2015, 2017).

Law-invariance is a commonly adopted property
that allows the regulator to perform statistical tests on
whether a firm uses a valid model in the capital ade-
quacy test. Conicity, which means that scaling a cap-
ital position by any positive constant does not affect
the acceptability of the position, is assumed in the
notion of coherent risk measures (Artzner et al. 1999).
Conicity is implied by numéraire invariance, a prop-
erty that is introduced by Artzner et al. (2009) and
further investigated by Koch-Medina et al. (2017). We
also prove that surplus-invariant, law-invariant, and
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numéraire-invariant acceptance sets must be the sets
induced by VaR.
The remainder of the paper is as follows: Section 2

delivers the main results and Section 3 concludes. All
proofs are placed in the appendix.

2. Main Results
2.1. Acceptance Sets
Consider a probability space (Ω,F ,� ) and denote
L0(Ω,F ,� ) as the set of all proper random variables
on this space. Let X be a subset of L0(Ω,F ,� ) that
containsL∞(Ω,F ,� ), the set of bounded random vari-
ables. Here, X can include unbounded random vari-
ables; for example, X can be L∞(Ω,F ,� ), L0(Ω,F ,� ),
and Lp(Ω,F ,� ) for some p ∈ [1,+∞) that represents
the set of random variables with finite Lp-norm. Each
element X in X represents the capital position of a firm,
i.e., the firm’s assets net of its liability, at the end of
a given period. Thus the positive part of X, denoted
as X+ :� max(X, 0), is the surplus of the firm’s share-
holders and the negative part of X, denoted as X− :�
−min(X, 0), is the option to default of the firm. The share-
holders of the firm take the surplus but do not pay the
option to default due to limited liability, therefore the
liability holders cannot take the surplus but have to
pay the option to default.
The regulator proposes a capital adequacy test by

specifying an acceptance set A. We make the standard
assumption in the risk measure literature (see, e.g.,
Artzner et al. 1999, Staum 2013, Koch-Medina et al.
2015) that whether a firm passes the capital adequacy
test only depends on the capital position of the firm.
Hence A is a subset of X : a firm passes the test if and
only if its capital position lies in A. We introduce the
following properties for the acceptance set A:

(i) Surplus invariance: for any X,Y ∈X , if X ∈A and
X− > Y− almost surely (a.s.), then Y ∈A.

(ii) Law invariance: for any X,Y ∈ X , if X ∈ A and Y
have the same distribution as X, then Y ∈A.
(iii) Conicity: for any X ∈X and λ > 0 such that λX ∈

X , if X ∈A, then λX ∈A.
(iv) Numéraire invariance: for any X ∈ X and any

strictly positive random variable Z on (Ω,F ,� ) such
that ZX ∈X , if X ∈A, then ZX ∈A.

(v) Truncation closedness: for any element X ∈ X , if
min(max(−d ,X), d) ∈A for any d > 0, then X ∈A.
The surplus-invariance property is proposed by

Koch-Medina et al. (2015),1 extending the excess-
invariance property of the shortfall risk measures and
the loss-dependence property of the loss-based risk
measures proposed by Staum (2013), Cont et al. (2013),
respectively.2 The surplus-invariance property stipu-
lates that if firm A passes the test, then firm B whose
option to default is smaller than that of firm A should
also pass the test. This property is satisfiedby the accep-
tance set that is associated with VaR, i.e., A � {X ∈ X |

V@Rα(X) 6 0}, and the one that is associated with a
shortfall risk measure, i.e., A � {X ∈ X |Ɛ[l(X−)] 6 c},
where l is a nonconstant and increasing function. See
Staum (2013), Koch-Medina et al. (2017) formore exam-
ples and discussion.

If an acceptance setA satisfies the surplus-invariance
property, then A satisfies the property that, for any
X,Y ∈X , if X 6 Y a.s. and X ∈A, then Y ∈A. In fact, the
latter property is used in the definition of acceptance
sets in Koch-Medina et al. (2015, 2017).

Law invariance is important for the regulator to use
historical data to backtest the models used by firms in
conducting the capital adequacy test. Conicity stipu-
lates that scaling the capital position of a firm by a pos-
itive constant does not change the acceptability of the
firm. This property is assumed in coherent risk mea-
sures (Artzner et al. 1999), but is not required in convex
risk measures (Föllmer and Schied 2002, Frittelli and
Rosazza Gianin 2002). Weber et al. (2013) show that
coherent risk measures applied to systems that exhibit
price impact may induce convex risk measures that are
not conic.

Numéraire invariance is introduced in Artzner et al.
(2009) and further investigated in Koch-Medina et al.
(2017). It means that “the acceptance set should not
depend on the choice of the eligible (numéraire) asset”
(Artzner et al. 2009, p. 114). Numéraire invariance can
accommodate the situation that the assets and liabil-
ities of firms may be denominated in different cur-
rencies. Koch-Medina and Munari (2016, Section 6)
show that the acceptance set associated with VaR is
numéraire invariant but that associated with expected
shortfall is not. Clearly, numéraire invariance implies
conicity.3 Without assuming numéraire invariance, the
currency risk can also be explicitly incorporated in cap-
ital adequacy tests by using vector-valued risk mea-
sures; see, e.g., Jouini et al. (2004).

The truncation-closedness property simply means
that if any truncated version of the (possibly un-
bounded) capital position X is acceptable, then X itself
is also acceptable. This property is similar to the con-
tinuity axiom for the distortion risk measure ρ, which
postulates that ρ satisfies

lim
d→+∞

ρ(min(d ,X))� lim
d→+∞

ρ(max(−d ,X))� ρ(X)

(Wang et al. 1997). The truncation-closedness prop-
erty automatically holds for any acceptance set if X �

L∞(Ω,F ,� ) and is satisfied by some commonly used
acceptance sets. For example, for any distortion risk
measure

ρh(X) :�
∫ ∞

0
h(� (X > x)) dx +

∫ 0

−∞
(h(� (X > x)) − 1) dx ,

where h is a distortion function (h is increasing with
h(0)� 0 and h(1)� 1), Aρh

� {X ∈X | ρh(X) 6 0} is trun-
cation closed because limd→∞ ρh(min(max(−d ,X), d))
� ρh(X).
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2.2. Value at Risk
The current practice of capital adequacy tests in the
Basel II Accord and the Solvency II is to use VaR;
the Basel III Accord imposes that starting from Janu-
ary 1, 2018, the expected shortfall at 97.5% level under
stressed scenarios will be used in the test of capital
adequacy formarket risk (Basel Committee on Banking
Supervision 2016). To define VaR formally, we intro-
duce some notations. For a given random variable X,
denote FX as its (right-continuous) cumulative dis-
tribution function. Denote F−1

X as the left-continuous
quantile function of X, i.e.,

F−1
X (t) :� sup{x ∈ � | FX(x) < t}

� inf{x ∈ � | FX(x) > t}, t ∈ [0, 1].
In particular, F−1

X (0) � −∞ and F−1
X (1) � ess sup X :�

inf{x | � (X 6 x) � 1} by definition. Furthermore,
F−1

X (t+) � inf{x ∈ � | FX(x) > t} is the right-continuous
quantile function of X (Föllmer and Schied 2016,
Lemma A.19); in particular, F−1

X (0+) � limz↓0 F−1
X (z) �

essinfX :� sup{x | � (X 6 x)� 0}, and F−1
X (1+)�+∞. It is

well known that for any x ∈� and t ∈ [0, 1], (i) FX(x)< t
if and only if F−1

X (t) > x and (ii) FX(x−) 6 t if and only
if F−1

X (t+) > x, where FX(x−) :� limz↑x FX(z). It is easy
to show that4 for any continuous, increasing function
ϕ: �→ �, F−1

ϕ(X)(z) � ϕ(F−1
X (z)), z ∈ (0, 1) and for any

continuous decreasing function ψ: �→ �, F−1
ψ(X)(z) �

ψ(F−1
X ((1− z)+)), z ∈ (0, 1).

VaR of X at level α is defined as the quantile function
of −X at level α. Formally, for any α ∈ [0, 1], we define
the lower α-VaR and upper α-VaR of X, respectively,
to be

V@Rl
α(X) :� F−1

−X(α)�−F−1
X ((1− α)+), (1)

V@Ru
α(X) :� F−1

−X(α+)�−F−1
X (1− α). (2)

For each α ∈ [0, 1], we define the following three
acceptance sets based on the default probability of
the firm:

A−α :� {X ∈X | � (X < 0) < 1− α}, (3)
A0
α :� {X ∈X | � (X 6 −ε) < 1− α, for any ε > 0}, (4)

A+

α :� {X ∈X | � (X < 0) 6 1− α}. (5)

In the Basel II Accord, a capital position X is accept-
able if and only if its VaR at certain level α (e.g., 99%)
is less than or equal to zero. The following Proposi-
tion 1 shows that A−α , A0

α, and A+

α are indeed induced
by VaR. Moreover, these acceptance sets are surplus
invariant, law invariant, conic, and truncation closed;
furthermore, A−α and A+

α are numéraire invariant.
Proposition 1. (i)For any α ∈ [0,1],A−α ,A0

α, andA+

α satisfy

A−α�{X∈X |V@Ru
α+δ(X)60, for some δ∈(0,1−α)}, (6)

A0
α�{X∈X |V@Ru

α(X)60}, (7)
A+

α�{X∈X |V@Rl
α(X)60}. (8)

In particular, A−1 �A0
1 �� and A+

1 � {X ∈X |X > 0 a.s.}.

(ii) For any α ∈ [0, 1], A−α , A0
α, and A+

α are surplus-
invariant, law-invariant, conic, and truncation-closed ac-
ceptance sets, and A−α ⊆ A0

α ⊆ A+

α; moreover, A−α and A+

α are
numéraire invariant. For any 0 6 α1 < α2 6 1, A−α1

⊇ A+

α2
.

Note that the surplus invariance of A+

α is already
shown in Staum (2013, Example 4.1) and Koch-Medina
et al. (2017, Example 1). It is also worth noting that
the acceptance set A+

1 requires that a firm is accept-
able if and only if it never defaults, therefore, it is only
formally a VaR-induced acceptance set. Finally, the dif-
ferences between A−α , A0

α, and A+

α are minor, although,
in general, A−α ( A0

α and A0
α ( A+

α . Moreover, A0
α is not

numéraire invariant, in general, as shown by Example 1
in Appendix D.

2.3. Surplus-Invariant, Law-Invariant, Conic, and
Truncation-Closed Acceptance Sets Must Be
the Sets Induced by VaR

We prove that any surplus-invariant, law-invariant,
conic (or numéraire-invariant), and truncation-closed
acceptance set must be a set induced by VaR. To this
end, we follow the literature of law-invariant risk mea-
sures (e.g., Kusuoka 2001, Jouini et al. 2006 Frittelli and
Rosazza Gianin 2005) to restrict ourselves to atomless
probability spaces that support a uniform randomvari-
able. Our results also hold for equiprobable probability
spaces ((Ω,F ,� ) is an equiprobable probability space if
Ω� {ω1 , . . . , ωn} and � (ωi)� 1/n, ∀ i); see Appendix C.
Theorem 1. Assume (Ω,F ,� ) is atomless. Then,

(i) If A is a surplus-invariant, law-invariant, conic, and
truncation-closed acceptance set, then there exists α ∈ [0, 1]
such that either A−α ⊆ A ⊆ A0

α or A�A+

α .
(ii) A is a surplus-invariant, law-invariant, numéraire-

invariant, and truncation-closed acceptance set if and only
if there exists α ∈ [0, 1] such that A�A−α or A�A+

α .

Theorem 1 shows that surplus-invariant, law-invar-
iant, conic (or numéraire-invariant), and truncation-
closed acceptance sets are essentially the sets induced
by VaR. As a technical comment, there exists a surplus-
invariant, law-invariant, conic, and truncation-closed
acceptance set A such that A−α ( A ( A0

α; see Example 2
in Appendix D.5

It is worth noting that an acceptance set A that satis-
fies the properties in Theorem 1 cannot be induced by
expected shortfall unless A is trivial, i.e., is the empty
set or the whole set of capital positions in X whose
expected shortfall is well defined (i.e., finite). In fact,
for the sake of contradiction, suppose such a nontriv-
ialA is induced by the expected shortfall at certain level
β ∈ [0, 1]; i.e., A � {X ∈ X |ESβ(X) ∈ B}, where B ⊆ �

and ESβ(X) :� (1/(1 − β)) ∫1
β V@Rl

α(X) dα � (1/(1− β)) ·
∫1
β F−1
−X(α) dα for β ∈ [0, 1) and ES1(X) :� ess sup(−X).

Note that ESβ(X) is well defined for X whose negative
part is integrablewhen β ∈ (0, 1), for X that is integrable
when β � 0, and for X that is bounded from below
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when β � 1. Now, for any constant c > 0 and X ∈X ,
we have c− � 0 6 X−. Recalling that A is nonempty
and surplus invariant, we must have c ∈ A, implying
that (−∞, 0] ⊆ B. In contrast, if there exists X ∈ A such
that ESβ(X) > 0, then it follows from the conicity of A
that (0,∞) ⊆ B, which implies that B � � and thus
A � {X ∈ X |ESβ(X) ∈ �}, a trivial set, which leads to
a contradiction. Hence there does not exist X ∈ A such
that ESβ(X) > 0, implying B � (−∞, 0]; i.e., A� {X ∈X |
ESβ(X) 6 0}. And then, it follows from Koch-Medina
et al. (2017, Example 5) that {X ∈ X |ESβ(X) 6 0} is not
surplus invariant, which contradicts the assumption
that A is surplus invariant. In addition, even the trivial
set A � {X ∈ X |ESβ(X) ∈ �} may not satisfy the prop-
erties in Theorem 1. For example, if X � L0(Ω,F ,� ),
then A� {X ∈X |ESβ(X) ∈ �} is not truncation closed.
Theorem1 can be simplified ifwe further require that

an acceptance set is closed with respect to some suit-
able topology onX . In particular, the spaceL0(Ω,F ,� )
is a complete metric space under the Ky Fan metric
(the metric is defined as d(X,Y) :� Ɛ[min(|X − Y |, 1)],
∀X,Y), whichmetrizes convergence in probability; see,
e.g., Dudley (2002, Theorems 9.2.2, 9.2.3, pp. 289–290).
Therefore, a subset of L0(Ω,F ,� ) is closed under the
Ky Fan metric topology if and only if it is closed under
convergence in probability. Hence we consider the fol-
lowing topological property of the acceptance setA:
(vi) Convergence-in-probability-closedness: if Xn → X
∈ X in probability as n→∞ and Xn ∈ A for all n, then
X ∈A.
Since min(max(−d ,X), d) → X a.s. as d → ∞, it

follows that convergence-in-probability-closedness im-
plies truncation closedness. Theorem 1 can be simpli-
fied to be the following Theorem 2 if we require that an
acceptance set is closedwith respect to themetric topol-
ogy ofL0(Ω,F ,� ), or, equivalently, closedwith respect
to convergence in probability.
Theorem 2. Assume (Ω,F ,� ) is atomless. Then, A is a
nonempty, surplus-invariant, law-invariant, conic (or num-
éraire-invariant), and convergence-in-probability-closed
acceptance set if and only if there exists α ∈ [0,1] such that
A�A+

α .
The proof of Theorem 2 is obtained by applying

Theorem 1 and verifying that, for α ∈ [0, 1), A+

α is
the closure of A−α in X under the metric topology of
L0(Ω,F ,� ). Similar results can be obtained if one con-
siders X ⊆ Lp(Ω,F ,� ) for some p ∈ [1,+∞) and the
closedness with respect to the Lp-norm, but not for
the case of X � L∞(Ω,F ,� ) and the closedness with
respect to the L∞-norm or the weak-star topology; see
Appendix B.

3. Conclusions
The regulator is interested in proposing a capital ade-
quacy test by specifyinganacceptance set forfirms’ cap-
ital positions at the end of a given period. Such test aims

to protect firms’ liability holders, therefore whether a
firm passes the test should not depend on the surplus
of the firm’s shareholders, a property referred to as sur-
plus invariance. We prove that surplus-invariant, law-
invariant, and conic acceptance sets must be the sets
induced by VaR, i.e., must be the set of capital positions
whose VaR at a given level is less than or equal to zero.
Wealsoprove that surplus-invariant, law-invariant, and
numéraire-invariant acceptance sets must be the sets
induced by VaR.

Our results contribute to show the potential con-
flicts between competing properties of capital ade-
quacy tests. Koch-Medina et al. (2015) show that the
class of acceptance sets that are convex and numéraire
invariant (or equivalently, coherent and surplus invari-
ant) is limited to scenario tests; in addition, law invari-
ance further narrows the domain to the positive cone
alone. We show that, if one drops convexity, the choice
is enlarged only by VaR-induced acceptance sets. In
contrast, if one drops conicity or numéraire invariance,
then there is a rich class of surplus-invariant, law-
invariant, and convex acceptance sets; see, for instance,
Cont et al. (2013); Koch-Medina et al. (2015, 2017). As
a result, if one finds the range of choices of acceptance
sets too restrictive, then one needs to sacrifice one of the
properties under investigation and is therefore forced
to setup criteria to prioritize competing properties such
as convexity, coherence, surplus invariance, numéraire
invariance, and law invariance. These properties might
be desirable if considered alone but lead to a narrow
range of choices when put together.6
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Appendix A. Proofs
Proof of Proposition 1. (i) For α � 1, it follows from the def-
initions in (3)–(5) that A−1 � A0

1 � �, and A+

1 � {X ∈ X |X > 0
a.s.}, which in combination with V@Ru

1 (X) � −F−1
X (0) � +∞

and V@Rl
1(X)�−F−1

X (0+)�−ess inf X, imply that (6)–(8) hold
for α � 1.

We then prove (6)–(8) for α ∈ [0, 1). Recall that for any
random variable X, x ∈�, and t ∈ [0, 1], FX(x)< t⇔ F−1

X (t)> x
and FX(x−) 6 t ⇔ F−1

X (t+) > x. We will show that F−1
X (1 −

α− δ) > 0 for some δ ∈ (0, 1− α) ⇔ F−1
X ((1− α − δ′)+) > 0 for

some δ′ ∈ (0, 1− α). The “⇒” direction follows from F−1
X ((1−

α− δ)+)> F−1
X (1−α− δ). To show the “⇐” direction, suppose

F−1
X ((1 − α − δ′)+) > 0 for some δ′ ∈ (0, 1 − α). Let δ � δ′/2.

Then, the monotonicity of F−1
X ( · ) implies that F−1

X (1−α− δ) >
F−1

X ((1− α− δ′)+) > 0.
Then, by (2), V@Ru

α+δ(X)60 for some δ∈(0,1−α)⇔F−1
X (1−

(α + δ)) > 0 for some δ ∈ (0,1−α) ⇔ F−1
X ((1− (α+δ′))+) > 0

for some δ′ ∈ (0,1−α) ⇔ 1− (α+δ′) > FX(0−) for some δ′ ∈
(0,1−α)⇔� (X<0)�FX(0−)<1−α. Thus (6) holds. Similarly,
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by (2), V@Ru
α(X)6 0⇔F−1

X (1−α)> 0⇔−ε < F−1
X (1−α) for any

ε>0⇔� (X6−ε)�FX(−ε)<1−α for any ε>0. Thus (7) holds.
Finally, by (1), V@Rl

α(X)6 0⇔ F−1
X ((1−α)+)> 0⇔� (X < 0)�

FX(0−)61−α. Thus (8) holds.
(ii) By definition, A−α , A0

α , and A+

α are law invariant and
conic. Moreover, it follows from (3) that, for any X ∈ A−α and
any Y ∈ X satisfying Y− 6 X− a.s., � (Y < 0) � � (−Y− < 0) 6
� (−X− < 0) � � (X < 0) < 1− α, which implies Y ∈ A−α . Hence
A−α is surplus invariant. A similar argument with the appli-
cation of (4) and (5) yields that A0

α and A+

α are also sur-
plus invariant. For any X ∈ X , and d > 0, it holds that
� (min(max(−d ,X), d) < 0) � � (X < 0), which in combination
with (3) implies that A−α is truncation closed. A similar argu-
ment yields that A0

α and A+

α are also truncation closed.
Note that, for any X ∈ X and any strictly positive random

variable Z such that ZX ∈ X , � (ZX < 0) � � (X < 0). Then,
it follows from (3) and (5) that A−α and A+

α are numéraire
invariant.

Finally, it follows from (3)–(5) that A−α ⊆ A0
α ⊆ A+

α for any
α ∈ [0, 1], and A−α1

⊇ A+

α2
for any 0 6 α1 < α2 6 1. �

Proof of Theorem 1. The proof of part (i) is as follows. If A�

�, then A�A−1 �A0
1, therefore we assume that A is nonempty

in the following. Define

α :� 1− sup
X∈A

� (X < 0)� 1− sup
X∈A

FX(0−). (A.1)

If α � 1, then by definition of α, A ⊆ {X ∈X |X > 0 a.s.} �A+

1 .
In contrast, because A is nonempty and surplus invariant,
A+

1 ⊆ A. Therefore A�A+

1 .
Now, suppose α ∈ [0, 1). First, we will show A−α ⊆ A; i.e.,

for any Z ∈ A−α ⊆ X , we will show that Z ∈ A. Since A is
truncation closed, we only need to show that for any fixed
d > 0, Y :� min(max(−d ,Z), d) ∈ A. Since Z ∈ A−α , it follows
from (3) that � (Y < 0) � � (Z < 0) < 1− α. Hence there exists
δ ∈ (0, 1 − α) such that FY(0−) � � (Y < 0) 6 1 − α − δ. By
the definition of α, there exists X ∈ A such that FX(0−) �
� (X < 0)> 1−α− δ. Because (Ω,F ,� ) is atomless, there exists
a uniformly distributed random variable U on (Ω,F ,� ) such
that X � F−1

X (U+) a.s. (see, e.g., Föllmer and Schied 2016,
Lemma A.32). Define Ỹ :� F−1

Y (U+). Then, it follows from
Föllmer and Schied (2016, Lemma A.23) that Ỹ has the same
distribution as Y. Because Y and Ỹ are bounded and thus
contained in X and A is law invariant, we only need to show
that Ỹ ∈A.

Because FX(0−) > 1− α− δ, we have F−1
X ((1− α− δ)+) < 0.

As a result, because F−1
Y (0+) > −d, there exists ε > 0 such that

εF−1
Y (0+) > F−1

X ((1 − α − δ)+), which implies that εF−1
Y (z+) >

εF−1
Y (0+) > F−1

X ((1 − α − δ)+) > F−1
X (z+) for any z ∈ (0, 1 −

α − δ]. Moreover, because FY(0−) 6 1 − α − δ, we have
F−1

Y (z+) > F−1
Y ((1 − α − δ)+) > 0, z ∈ (1 − α − δ, 1). Conse-

quently, min(εF−1
Y (z+), 0) > min(F−1

X (z+), 0) for any z ∈ (0, 1)
and thus (εỸ)− � −min(εF−1

Y (U+), 0) 6 −min(F−1
X (U+), 0)

� X− a.s. Because εỸ ∈L∞(Ω,F ,� ) ⊆ X , X ∈A, and A is sur-
plus invariant, εỸ ∈ A. Then, because Ỹ ∈ L∞(Ω,F ,� ) ⊆ X
and A is conic, we obtain that Ỹ ∈A.

In contrast, (5) and the definition of α in (A.1) imply
A ⊆ A+

α . Thus we have proved that A−α ⊆ A ⊆ A+

α . Hence there
are only two cases: (1) A−α ⊆ A ⊆ A0

α and (2) there exists X ∈A
such that X < A0

α . To complete the proof, we only need to
show that the second case leads to A�A+

α .

In fact, in the second case, let X ∈ A be such that X < A0
α .

Since X ∈ A, it follows from (A.1) that FX(0−) 6 1− α, which
implies that F−1

X ((1−α)+)> 0. Since X <A0
α , it follows from (7)

that V@Ru
α(X)> 0, which in combination with (2) implies that

F−1
X (1− α) < 0.
Because (Ω,F ,� ) is atomless, there exists a uniform ran-

dom variable U such that X � F−1
X (U) a.s. (see, e.g., Föllmer

and Schied 2016, Lemma A.32). Now, for any Z ∈ A+

α ⊆ X ,
we will show that, Z ∈ A. Since A is truncation closed, we
only need to show that for any fixed d > 0, Y :� min(d,
max(−d ,Z)) ∈ A. Since Z ∈ A+

α , Y ∈ L∞(Ω,F ,� ) ⊆ X , and
� (Y < 0) � � (Z < 0), it follows from (5) that Y ∈A+

α , and
FY(0−) 6 1− α, which implies that F−1

Y ((1 − α)+) > 0. Define
Ỹ :� F−1

Y (U). Then, it follows from Föllmer and Schied (2016,
Lemma A.23) that Ỹ has the same distribution as Y. Because
F−1

X (1 − α) < 0 and F−1
Y (0+) > −d, there exists ε > 0 such

that εF−1
Y (0+) > F−1

X (1 − α), which implies that εF−1
Y (z) >

εF−1
Y (0+) > F−1

X (1 − α) > F−1
X (z), ∀ z ∈ (0, 1− α]. Moreover,

because F−1
Y (z) > F−1

Y ((1− α)+) > 0, z ∈ (1− α, 1), we conclude
that min(εF−1

Y (z), 0) > min(F−1
X (z), 0) for any z ∈ (0, 1). Con-

sequently, (εỸ)− � −min(εF−1
Y (U), 0) 6 −min(F−1

X (U), 0) � X−

a.s. Since A is surplus invariant and εỸ ∈ L∞(Ω,F ,� ) ⊂ X ,
it follows that εỸ ∈ A. Because Y and Ỹ are bounded and
thus contained in X , conicity of A implies that Ỹ ∈A and law
invariance of A implies that Y ∈ A. Therefore A � A+

α , which
completes the proof of part (i).

The proof of part (ii) is as follows. The “if” direction fol-
lows from Proposition 1. To show the “only if” direction,
suppose A is surplus invariant, law invariant, numéraire
invariant, and truncation closed. Since numéraire invariance
implies conicity, it follows from part (i) of the theorem that
there exists α ∈ [0, 1], such that A−α ⊆A ⊆A0

α or A�A+

α . There
are two cases: α � 1 and α ∈ [0, 1). In the first case, it fol-
lows from (3) and (4) that A−α �A0

α ��. Hence, A�A−α �� or
A � A+

α . In the second case, suppose for the sake of contra-
diction that A−α ( A ⊆ A0

α . Then, there exists X ∈ A ⊆ A0
α such

that X < A−α . Fix d > 0 and define Y :� min(d ,max(−d ,X)).
Noting Y ∈L∞(Ω,F ,� ) ⊆X , and Y− 6 X−, we conclude from
the surplus invariance of A that Y ∈ A ⊆ A0

α . It follows from
(3) and � (Y < 0)� � (X < 0) that Y <A−α , and � (Y < 0) > 1− α.
Define Z :� −(1/Y)1{Y<0} + 1{Y>0}. Then, Z > 0, and ZY �

−1{Y<0} + Y1{Y>0} ∈ L∞(Ω,F ,� ) ⊆ X . Moreover, for any ε ∈
(0, 1), � (ZY 6 −ε) � � (Y < 0) > 1− α, which implies from (4)
that ZY <A0

α and thus ZY <A. This contradicts the assump-
tion that A is numéraire invariant. �

Proof of Theorem 2. To prove the “if” part, by Proposition 1,
we only need to show that A+

α is convergence-in-probability
closed. Suppose Xk ∈ A+

α , k � 1, 2, . . ., and Xk → X ∈ X in
probability as k→∞. Then, for any δ > 0, � (X 6 −δ)� � (X 6
−δ, |Xk −X | > δ/2)+� (X 6 −δ, |Xk −X | < δ/2) 6 � (|Xk −X | >
δ/2)+ � (Xk 6 −δ/2) 6 � (|Xk −X | > δ/2)+ 1− α. Letting k→
∞, we obtain � (X 6 −δ) 6 1 − α. Then, letting δ ↓ 0 yields
� (X < 0) 6 1− α, which in combination with (5) implies that
X ∈A+

α .
Next, we prove the “only if” part. Recall part (i) of The-

orem 1 and the convergence-in-probability closedness of A+

α

in X , α ∈ [0, 1]. Because A is assumed to be nonempty and
A−1 �A0

1 ��, we only need to show that for any α ∈ [0, 1), the
convergence-in-probability closure of A−α in X is A+

α , i.e., for
any X ∈ A+

α\A−α , there exists a sequence Xk , k � 1, 2, . . . such
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that Xk ∈A−α , ∀ k, and Xk→X in probability as k→∞. For any
n � 1, 2, . . . , denote Yn :� min(n ,max(−n ,X)) ∈ L∞(Ω,F ,� )
⊆ X . Because � (Yn < 0)� � (X < 0), we conclude from (3) and
(5) that Yn ∈ A+

α\A−α . In the following, we show that for each
fixed n, we can find a sequence Zn

k , k � 1, 2, . . . inA−α such that
it converges to Yn in probability as k→∞. Then, for any k ∈�,
there exists index mk such that d(Zk

mk
,Yk) < 1/k, where d(·, ·)

denotes the Ky Fan metric (i.e., d(X,Y) :� Ɛ[min(|X − Y |, 1)],
∀X,Y). Define the sequence Xk :� Zk

mk
, k � 1, 2, . . . . Then,

Xk ∈A−α , and Xk converges to X in probability as k→∞.
For fixed n, because Yn ∈ A+

α\A−α , we conclude from (3)
and (5) that � (Yn < 0) � 1− α > 0. Denote a :� essinfYn ; then
a ∈ [−n , 0) because � (Yn < 0) > 0 and Yn > −n. There are two
cases: (i) � (Yn � a)� 0 and (ii) � (Yn � a) > 0. In case (i), define
Zn

k :� Yn1{Yn>a+1/k} ∈ L∞(Ω,F ,� ) ⊆ X , ∀ k. By the definition
of a, � (Yn < a + 1/k) > 0, ∀ k. Hence � (Zn

k < 0) � � (Yn < 0) −
� (Yn < a + 1/k) < � (Yn < 0)� 1− α, ∀ k > −1/a, which implies
that Zn

k ∈A
−
α , ∀ k > −1/a. In addition, limk→+∞ � (Yn < a + 1/k)

� � (Yn � a)� 0, implying that Zn
k → Yn a.s. and thus in prob-

ability as k→∞. In case (ii), by the intermediate value theo-
rem for atomless measures (see, e.g., Fremlin 2010, Proposi-
tion 215D, p. 46), there exists a sequence of decreasing sub-
sets {Yn � a} ⊃ A1 ⊃ A2 ⊃ · · · , such that � (Ak) � (1/(k + 1)) ·
� (Yn � a), ∀ k. Define Zn

k :� Yn1{Ω\Ak } ∈ L∞(Ω,F ,� ) ⊆ X .
Then, � (Zn

k < 0) � � (Yn < 0) − � (Ak) < 1 − α, which implies
that Zn

k ∈ A−α , ∀ k. In addition, for any ε > 0, � (|Zn
k −Yn |

> ε) 6 � (Ak) → 0 as k→∞, which implies that Zn
k → Yn in

probability as k→∞. �

Appendix B. Topologies on X
In this section, we first show that Theorem 2 still holds if we
restrict X ⊆ Lp(Ω,F ,� ) for some p ∈ [1,+∞) and consider
the closedness with respect to the Lp-norm.

Corollary 1. Assume (Ω,F ,� ) is atomless and X ⊆Lp(Ω,F ,� )
for some p ∈ [1,+∞). Then, A is a nonempty, surplus invariant,
law invariant, conic (or numéraire-invariant), and Lp closed (i.e.,
A is closed in X under the Lp-norm) acceptance set if and only if
there exists α ∈ [0, 1] such that A�A+

α .

Proof. Following the same steps in the proof of Theorem 2,
we only need to show that (i) for any α ∈ [0, 1], A+

α is closed
in X under the Lp-norm and (ii) for any α ∈ [0, 1), the clo-
sure of A−α in X under the Lp-norm is A+

α . Claim (i) is true
because we already showed in the proof of Theorem 2 that
A+

α is closed in X under the convergence in probability, and
the topology induced by the Lp-norm is stronger than that
induced by the convergence in probability. To show claim
(ii), recall the sequence of random variables Zn

k in A−α for
large enough k that are constructed in the proof of Theo-
rem 2 to converge in probability to a given bounded random
variable Yn in A+

α . Careful examination shows that Zn
k con-

verges, as k→ +∞, to Yn in Lp-norm as well. Thus, claim (ii)
is true. �

Theorem 2 does not hold if we consider X �L∞(Ω,F ,� )
and the closedness with respect to the L∞-norm because the
closure of A−α under this norm is a strict subset of A+

α , in
general. Indeed, similar to the proof of Theorem 2, we can
show that A+

α is closed in X under the L∞-norm. Now, fix
α ∈ [0, 1) and consider X ∈ A+

α such that � (X � 1) � α and

� (X �−1) � 1− α. For any Y ∈ A−α , we have � (Y < 0) < 1− α,
therefore � (Y > 0, X �−1) > � (X �−1)−� (Y < 0)> 0. Conse-
quently, the L∞-norm of X −Y must be larger than or equal
to 1, implying that X is not in the closure of A−α under the
L∞-norm.

Theorem 2 does not hold if we consider X �L∞(Ω,F ,� )
and the closedness with respect to the weak-star topology
because A+

α is not closed under this topology, in general.
Indeed, considerΩ� [0, 1], F to be the Borel σ-algebra, and �
to be the Lebesgue measure. We show that for any α ∈ (0, 1),
A+

α is not closed under the weak-star topology. For any X ∈
L∞(Ω,F ,� ), any ε > 0, and any finite subset A ofL1(Ω,F ,� ),
denote N(X,A, ε) :� {Y ∈ L∞(Ω,F ,� ) | |Ɛ[YZ] − Ɛ[XZ]| < ε,
∀Z ∈ A}. Then, {N(X,A, ε) |X ∈ L∞(Ω,F ,� ), A is a finite
subset of L1(Ω,F ,� ), ε > 0} form a base of the weak-star
topology; see Dunford and Schwartz (1988, Definition V.3.2).
Now, consider X∗ ≡ −(1− α) ∈ X\A+

α . In the following, we
show that for any finite subset A of L1(Ω,F ,� ) and any
ε > 0, there exists X′ ∈ N(X∗ ,A, ε) ∩A+

α ; consequently, A+

α is
not closed under the weak-star topology.

For each i ∈ {1, . . . , n}, because Zi ∈L1(Ω,F ,� ) and the set
of continuous functions is dense in L1(Ω,F ,� ), there exists
a continuous function Z̃i(t), t ∈ [0, 1] such that Ɛ[|Zi − Z̃i |]
< ε/3. Because Z̃i ’s are uniformly continuous, there exists an
integer m > 1 such that |Z̃i(t) − Z̃i(s)| < ε/(6α(1− α)) for any
i ∈ {1, . . . , n} and any s , t ∈ [0, 1] such that |s − t | 6 1/m. Now,
define

Xm(t)�


−1, t ∈

[
k − 1

m
,

k − 1
m

+
1− α

m

)
,

0, t ∈
[

k − 1
m

+
1− α

m
,

k
m

)
,

k � 1, . . . ,m.

Then, � (Xm < 0) � � (Xm � −1) � 1 − α, therefore Xm ∈ A+

α .
We have

|Ɛ[Z̃i Xm]−Ɛ[Z̃i X
∗]|

�

����∫ 1

0
Z̃i(t)Xm(t)dt−

∫ 1

0
Z̃i(t)X∗(t)dt

����
�

���� m∑
k�1

[
−
∫ (k−1)/m+(1−α)/m

(k−1)/m
Z̃i(t)dt

]
+(1−α)

∫ 1

0
Z̃i(t)dt

����
�

���� m∑
k�1

[
−α

∫ (k−1)/m+(1−α)/m

(k−1)/m
Z̃i(t)dt

+(1−α)
∫ k/m

(k−1)/m+(1−α)/m
Z̃i(t)dt

] ����
�

���� m∑
k�1

[
−α

∫ (k−1)/m+(1−α)/m

(k−1)/m

(
Z̃i(t)− Z̃i

(
k−1

m
+

1−α
m

))
dt

+(1−α)
∫ k/m

(k−1)/m+(1−α)m

(
Z̃i(t)− Z̃i

(
k−1

m
+

1−α
m

))
dt

] ����
6

m∑
k�1

[
α

∫ (k−1)/m+(1−α)/m

(k−1)/m

����Z̃i(t)− Z̃i

(
k−1

m
+

1−α
m

)����dt

+(1−α)
∫ k/m

(k−1)/m+(1−α)/m

����Z̃i(t)− Z̃i

(
k−1

m
+

1−α
m

)����dt
]

<ε/3,
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where the last inequality holds because |Z̃i(t) − Z̃i(s)| <
ε/(6α(1− α)) for any s , t ∈ [0, 1] such that |s − t | < 1/m. As a
result,

|Ɛ[Zi Xm] − Ɛ[Zi X
∗]|

6 |Ɛ[Z̃i Xm] − Ɛ[Z̃i X
∗]| + |Ɛ[Z̃i Xm] − Ɛ[Zi Xm]|

+ |Ɛ[Z̃i X
∗] − Ɛ[Zi X

∗]|
< ε/3+ 2Ɛ[|Z̃i −Zi |] < ε,

where the second inequality holds because |Xm | 6 1 and
|X∗ | 6 1, and the third inequality is the case because
Ɛ[|Z̃i −Zi |] < ε/3. Thus Xm ∈N(X∗ ,A, ε) ⊆ N(X,A, ε). In con-
trast, Xm ∈A+

α . ThereforeA+

α is not closed under the weak-star
topology.

The previous example is due to Marcel Nutz in a pri-
vate communication between him and the first author of the
present paper.

Appendix C. The Case of Equiprobable
Probability Spaces

Theorem 3. Suppose (Ω,F ,� ) is an equiprobable probability
space. Then, A is a surplus-invariant, law-invariant, and conic (or
numéraire-invariant) acceptance set if and only if it is the empty
set or A+

α for some α ∈ [0, 1].
Proof of Theorem 3. SupposeΩ� {ω1 , . . . , ωn}. Then, by de-
finition, � ({ωi}) � 1/n , i � 1, . . . , n. First, we show that, for
any random variable X on (Ω,F ,� ), there exist random vari-
ables U and Ũ on (Ω,F ,� ) such that (i) X � F−1

X (U+)� F−1
X (Ũ)

and (ii) any random variable Y on (Ω,F ,� ) has the same
distribution as F−1

Y (U+) and F−1
Y (Ũ). In fact, without loss of

generality (by relabeling the states if necessary), suppose that
X(ωi) � xk , nk−1 < i 6 nk , k � 1, . . . ,m, where n0 � 0 < n1 <
· · · < nm � n, and x1 < x2 < · · · < xm . Then, we define two
random variables Ũ and U as follows: Ũ(ωi) :� i/n ,U(ωi) :�
(i − 1)/n , i � 1, . . . , n. Then, we have F−1

X (Ũ(ωi)) � F−1
X (i/n) �

xk �X(ωi) for any nk−1 < i 6 nk ; hence F−1
X (Ũ)�X. In addition,

F−1
X (U(ωi)+) � F−1

X (((i − 1)/n)+) � xk � X(ωi) for any nk−1 <
i 6 nk ; hence F−1

X (U+) � X. For any random variable Y on
(Ω,F ,� ), suppose that {Y(ω) |ω ∈ Ω} � {y1 , . . . , ym̄}, where
y1 < · · · < ym̄ , and � (Y 6 yk) � n̄k/n, k � 1, . . . , m̄, where n̄0 �

0< n̄1 < · · ·< n̄m̄ � n. Define a random variable Ȳ as Ȳ(ωi)� yk
for any n̄k−1 < i 6 n̄k . Then, we have F−1

Y (Ũ(ωi)) � F−1
Y (i/n) �

yk � Ȳ(ωi) for any n̄k−1 < i 6 n̄k ; hence F−1
Y (Ũ)� Ȳ. In addition,

F−1
Y (U(ωi)+)� F−1

Y (((i−1)/n)+)� yk � Ȳ(ωi) for any n̄k−1 < i 6
n̄k ; hence F−1

Y (U+) � Ȳ. Since Ȳ has the same distribution as
Y, it follows that (ii) holds.

Because Ω is a finite set, all random variables on (Ω,F ,� )
are bounded and thus form the space of capital positions X ;
in consequence, any acceptance set is truncation closed.
Then, using U and Ũ as constructed previously, it can be eas-
ily varified that the proof for part (i) of Theorem 1 can also
go through for the case of equiprobable probability spaces;
therefore, if A is a surplus-invariant, law-invariant, and conic
acceptance set, then there exists α ∈ [0, 1] such that A−α ⊆ A ⊆
A0
α or A �A+

α . When such α � 1, we have A−1 �A0
1 ��, there-

fore A � � or A � A+

1 in this case. When such α ∈ [0, 1), we
claim that A−α �A0

α �A+

α′ for some α′ ∈ (α, 1]. Indeed, for any
X ∈ A0

α , there are two cases: (i) X > 0. In this case, by defini-
tion of A−α , X ∈ A−α and (ii) there exists ω such that X(ω) < 0.
Let x∗ :� max{X(ω) |X(ω) < 0, ω ∈Ω}. Note that Ω is a finite

set, therefore x∗ < 0. Then, it follows from (4) that � (X 6 x∗)
< 1 − α, which implies that � (X < 0) � � (X 6 x∗) < 1 − α.
By (3), we conclude X ∈ A−α . Hence A−α � A0

α . Now, noting
that the probability of any event A on (Ω,F ,� ) is a multi-
ple of 1/n, � (A) < 1 − α if and only if � (A) 6 1 − α′, where
α′ :� 1− (dn(1− α)e − 1)/n and dxe stands for the ceiling of x
(i.e., the smallest integer dominating x); moreover, because
dn(1−α)e−1< n(1−α), and α < 1, we conclude that α′ ∈ (α, 1].
In consequence, by (3) and (5), X ∈ A−α if and only if X ∈ A+

α′ ;
i.e., A−α �A+

α′ .
Finally, combining the previous discussion for the case

α � 1 and for the case α ∈ [0, 1), we conclude that A is a
surplus-invariant, law-invariant, and conic acceptance set if
and only if it is the empty set or A+

α for some α ∈ [0, 1]. The
previous argument still holds when conicity is replaced by
numéraire invariance. �

Appendix D. Two Examples
Example 1. Suppose (Ω,F ,� ) is atomless and let X �

L∞(Ω,F ,� ). Consider a uniformly distributed random vari-
able Y with support (−1 + α, α). It follows from (3) and (4)
that Y ∈ A0

α and Y < A−α . Define Z :� −(1/Y)1{Y<0} + 1{Y>0}.
Then, Z > 0, and ZY � −1{Y<0} + Y1{Y>0} ∈ X . Moreover, for
any ε ∈ (0, 1), � (ZY 6 −ε) � � (Y < 0) � 1 − α, which in com-
bination with (4) implies that ZY < A0

α . Therefore A0
α is not

numéraire invariant.

Example 2. Suppose (Ω,F ,� ) is atomless and let X �

L∞(Ω,F ,� ). Fix α ∈ (0, 1) and consider Y ∈ X such
that Y has a uniform distribution on (−1 + α, α). Then,
F−1

Y (z) � z − (1 − α), z ∈ (0, 1). Define X1 :� {X ∈ X |∃ δ >
0 such that δmin(F−1

X (z), 0) >min(F−1
Y (z), 0), ∀ z ∈ (0, 1)}, and

X2 :�X\X1. One can see thatX i ’s are law invariant and conic;
consequently, therefore is A :� (X1 ∩ A0

α) ∪ (X2 ∩ A−α). First,
for any random variable X, min(F−1

X (z), 0)� F−1
−X− (z), z ∈ (0, 1)

because F−1
ϕ(X)(z)� ϕ(F

−1
X (z)), z ∈ (0, 1) for any continuous and

increasing function ϕ (see endnote 4). Second, it is obvious
thatA−α ⊆A⊆A0

α . Third, wewill show thatA is surplus invari-
ant. Consider any X1 ∈ A and X2 ∈ X such that X−2 6 X−1 a.s.
There are two cases: (1) If X1 ∈ X1, then X1 ∈ A0

α . Because
X−2 6 X−1 a.s. and A0

α is surplus invariant, we conclude that
X2 ∈ A0

α . Furthermore, min(F−1
X1
(z), 0) � F−1

−X−1
(z) 6 F−1

−X−2
(z) �

min(F−1
X2
(z), 0), ∀ z ∈ (0, 1) because X−2 6X−1 a.s. Consequently,

X2 ∈X1 and thus X2 ∈A. (2) If X1 ∈X2, then X1 ∈A−α . Because
X−2 6 X−1 a.s. and A−α is surplus invariant, we conclude that
X2 ∈ A−α ⊆ A. Fourth, as X �L∞(Ω,F ,� ), the acceptance set
A is truncation closed. Finally, one can see that Y < A−α and
Y ∈X1∩A0

α ⊆A. Moreover, Ỹ with quantile function F−1
Ỹ
(z)�

z − (1− α), z > 1− α, and F−1
Ỹ
(z) � −

√
1− α− z, z < 1− α falls

neither in X1 nor in A−α , therefore Ỹ < A; however, Ỹ ∈ A0
α .

To summarize, A is a surplus-invariant, law-invariant, conic,
and truncation-closed acceptance set and A−α ( A ( A0

α .

Endnotes
1Koch-Medina et al. (2015) use a slightly different, but equivalent,
definition of surplus invariance; see Equation (1.1) in their paper and
Proposition 1 in Koch-Medina et al. (2017).
2A risk measure ρ is excess invariant if ρ(X) � ρ(Y) for all X and Y
such that X− � Y− and is loss dependent if ρ(X) � ρ(min(X, 0)) for
any X.
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3Koch-Medina et al. (2017, Proposition 5) show that a closed accep-
tance set A is numéraire invariant and monotone (i.e., for any X
and Y, if X 6 Y a.s. and X ∈A, then Y ∈A) if and only if it is surplus
invariant and conic.
4 In fact, by Lemma A.27 in Föllmer and Schied (2016), F−1

ϕ(X)(z) �
ϕ(F−1

X (z)) for a.e. z ∈ (0, 1). Since F−1
ϕ(X)(z) and ϕ(F−1

X (z)) are left con-
tinuous, it follows that F−1

ϕ(X)(z) � ϕ(F−1
X (z)) for any z ∈ (0, 1). Similar

argument leads to F−1
ψ(X)(z)� ψ(F−1

X ((1− z)+)), ∀ z ∈ (0, 1).
5This example also illustrates that for a surplus-invariant accep-
tance set, conicity is not equivalent to numéraire invariance without
any topological assumption on the set. For a comparison, see Koch-
Medina et al. (2017, Proposition 5).
6We are grateful to an anonymous referee for phrasing most of the
sentences of this paragraph in his or her referee reports for our paper.
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