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and their relations to elicitability and co-elicitability; in particular, we show that the co-elicitability of VaR and expected
shortfall does not lead to a reliable backtesting method for expected shortfall and there have been only indirect backtesting
methods for expected shortfall. Furthermore, we extend the result to address model uncertainty by incorporating multiple
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1. Introduction

This paper attempts to provide a decision-theoretic founda-
tion for the measurement of economic tail risk. Two impor-
tant applications are setting insurance premiums and cap-
ital requirements for financial institutions. For example, a
widely used class of risk measures for setting insurance risk
premiums is proposed by Wang et al. (1997) based on a set
of axioms. In terms of capital requirements, Gordy (2003)
provides a theoretical foundation for the Basel Accord
banking book risk measure, by demonstrating that under
certain conditions the risk measure is asymptotically equiv-
alent to the 99.9% value-at-risk (VaR). VaR is a widely
used approach for the measurement of tail risk; see, e.g.,
Duffie and Pan (1997, 2001) and Jorion (2007).

In this paper we focus on two aspects of risk mea-
surement. First, risk measurement is closely related to
utility theories of risk preferences. The papers that are
most relevant to the present paper are Schmeidler (1986,
1989), which extend the expected utility theory by relax-
ing the independence axiom to the comonotonic indepen-
dence axiom; this class of risk preference can successfully
explain various violations of the expectated utility theory,
such as the Ellsberg paradox. Second, a major difficulty
in measuring tail risk is that the tail part of a loss distri-
bution is difficult to estimate and hence bears substantial

model uncertainty. As emphasized by Hansen (2013, p. 19),
“uncertainty can come from limited data, unknown models
and misspecification of those models.”

In the face of statistical uncertainty, different procedures
may be used to forecast the risk measure. It is hence desir-
able to be able to evaluate which procedure gives a better
forecast. The elicitability of a risk measure is a property
based on a decision-theoretic framework for evaluating the
performance of different forecasting procedures (Gneiting
2011). The elicitability of a risk measure means that the
risk measure can be obtained by minimizing the expecta-
tion of a forecasting objective function (i.e., a scoring rule;
see Winkler and Jose 2011); then, the forecasting objective
function can be used for evaluating different forecasting
procedures.

Elicitability is closely related to backtesting, whose ob-
jective is to evaluate the performance of a risk forecast-
ing model. If a risk measure is elicitable, then the sample
average forecasting error based on the objective function
can be used for backtesting the risk measure. Gneiting
(2011, p. 756) shows that �-quantile as a set-valued sta-
tistical functional is elicitable but expected shortfall is not,
which “may challenge the use of the expected shortfall as
a predictive measure of risk, and may provide a partial
explanation for the lack of literature on the evaluation of
expected shortfall forecasts, as opposed to quantile or VaR
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forecasts.” Gaglianone et al. (2011) propose a backtest for
evaluating VaR estimates that delivers more power in finite
samples than existing methods and develop a mechanism
to find out why and when a model is misspecified; see also
Jorion (2007, Ch. 6). Linton and Xiao (2013, p. 791) point
out that VaR has an advantage over expected shortfall as
the asymptotic inference procedures for VaR “has the same
asymptotic behavior regardless of the thickness of the tails.”

The elicitability of a risk measure is also related to the
concept of “consistency” of a risk measure proposed by
Davis (2013), who shows that VaR exhibits some inherent
superiority over other risk measures.

The main result of the paper is that the only risk mea-
sures that satisfy both a set of economic axioms proposed
by Schmeidler (1989) and the statistical requirement of
general elicitability are the mean functional and value-at-
risk, in particular the median shortfall, which is the median
of the tail loss distribution and is also the VaR at a higher
confidence level.

In this paper, we also provide comprehensive discussion
on various approaches of backtesting and their relations to
elicitability and the co-elicitability of more than one statis-
tical functionals (Lambert et al. 2008), which is a weaker
notion of elicitability than the notion of elicitability of one
statistical functional. In particular, we show that (i) the co-
elicitability of VaR and expected shortfall does not lead to
a reliable backtesting method for expected shortfall, and
(ii) there have been only indirect back-testing methods for
expected shortfall; see Sections 2.4 and 2.5.

A risk measure is said to be robust if (i) it can accom-
modate model misspecification (possibly by incorporating
multiple scenarios and models) and (ii) it has statistical
robustness, which means that a small deviation in the model
or small changes in the data only results in a small change
in the risk measurement. The first part of the meaning of
robustness is related to ambiguity and model uncertainty in
decision theory. To address these issues, multiple priors or
multiple models may be used; see Gilboa and Schmeidler
(1989), Maccheroni et al. (2006), and Hansen and Sargent
(2001, 2007), among others. We also incorporate multiple
models in this paper; see Section 3. We add to the literature
by studying the link between risk measures and statisti-
cal uncertainty via elicitability. As for the second part of
the meaning of robustness, Cont et al. (2010) show that
expected shortfall leads to a less robust risk measurement
procedure than historical VaR; Kou et al. (2006, 2013) pro-
pose a set of axioms for robust external risk measures,
which include VaR.

There has been a growing literature on capital require-
ments for banking regulation and robust risk measure-
ment. Glasserman and Kang (2013) investigate the design
of risk weights to align regulatory and private objec-
tives in a mean-variance framework for portfolio selec-
tion. Glasserman and Xu (2014) develop a framework for
quantifying the impact of model error and for measuring

and minimizing risk in a way that is robust to model
error. Keppo et al. (2010) show that the Basel II market
risk requirements may have the unintended consequence
of postponing banks’ recapitalization and hence increas-
ing banks’ default probability. We add to this literature by
applying our theoretical results to the study on which risk
measure may be more suitable for setting capital require-
ments in Basel Accords; see Section 4.

Important contribution to measurement of risk based on
economic axioms includes Aumann and Serrano (2008),
Foster and Hart (2009, 2013), and Hart (2011), which
study risk measurement of gambles (i.e., random variables
with positive mean and taking negative values with posi-
tive probability). This paper complements their results by
linking economic axioms for risk measurement with statis-
tical model uncertainty; in addition, our approach focuses
on the measurement of tail risk for general random vari-
ables. Thus, the risk measure considered in this paper has
a different objective.

The remainder of the paper is organized as follows.
Section 2 presents the main result of the paper and dis-
cusses various approaches of backtesting and their relations
to elicitability and co-elicitability. In Section 3, we pro-
pose to use a scenario aggregation function to combine
risk measurements under multiple models. In Section 4, we
apply the results in previous sections to the study of Basel
Accord capital requirements. Section 5 is devoted to rele-
vant comments.

2. Main Results

2.1. Axioms and Representation

Let 4ì1F1 P5 be a probability space that describes the
states and the probability of occurrence of states at a future
time T . Assume the probability space is large enough
so that one can define a random variable uniformly dis-
tributed on [0,1]. Let a random variable X defined on the
probability space denote the random loss of a portfolio
of financial assets that will be realized at time T . Then
−X is the random profit of the portfolio. Let X be a
set of random variables that include all bounded random
variables, i.e., X ⊃ L�4ì1F1 P5, where L�4ì1F1 P5 2=
8X � there exists M <� such that �X�¶M1 a.s. P9. A risk
measure � is a functional defined on X that maps a random
variable X to a real number �4X5. The specification of X
depends on �; in particular, X can include unbounded ran-
dom variables. For example, if � is variance, then X can
be specified as L24ì1F1 P5; if � is VaR, then X can be
specified as the set of all random variables.

An important relation between two random variables
is comonotonicity (Schmeidler 1986): Two random vari-
ables X and Y are said to be comonotonic, if 4X4�15 −

X4�2554Y 4�15 − Y 4�255 ¾ 0, ∀�11�2 ∈ ì. Let X and Y
be the loss of two portfolios, respectively. Suppose that
there is a representative agent in the economy and he or
she prefers the profit −X to the profit −Y . If the agent is
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risk averse, then his or her preference may imply that −X

is less risky than −Y . Motivated by this, we propose the
following set of axioms, which are based on the axioms
for the Choquet expected utility (Schmeidler 1989), for the
risk measure �.

Axiom A1. Comonotonic independence: for all pairwise
comonotonic random variables X1Y 1Z and for all � ∈

40115, �4X5 < �4Y 5 implies that �4�X + 41 − �5Z5 <

�4�Y + 41 −�5Z5.

Axiom A2. Monotonicity: �4X5¶ �4Y 5, if X ¶ Y .

Axiom A3. Standardization: �4x · 1ì5 = sx, for all x ∈ �,
where s > 0 is a constant.

Axiom A4. Law invariance: �4X5= �4Y 5 if X and Y have
the same distribution.

Axiom A5. Continuity: limM→��4min4max4X1−M51M55=

�4X5, ∀X.

Axiom A1 corresponds to the comonotonic indepen-
dence axiom for the Choquet expected utility risk prefer-
ences (Schmeidler 1989). Axiom A1 is postulated based on
two motivations. First, Axiom A1 is a very weak require-
ment on �, as the pairwise comonotonicity of three random
variables is a very strong condition. Second, to see the intu-
ition behind Axiom A1, consider three pairwise comono-
tonic random variables X1Y 1Z and � ∈ 40115. If �4X5 <

�4Y 5, then it seems reasonable that �4�X5 < �4�Y 5. In
addition, since X1Y 1Z are comonotonic, adding 41 −�5Z

to �X or �Y does not hedge away the risk of �X or �Y ;
hence, it would be reasonable to have �4�X+ 41−�5Z5 <

�4�Y + 41 − �5Z5, which leads to Axiom A1. Axiom A2
is a minimum requirement for a reasonable risk measure.
Axiom A3 with s = 1 is used in Schmeidler (1986); the
constant s in Axiom A3 can be related to the “counter-
cyclical indexing” risk measures proposed in Gordy and
Howells (2006), where a time-varying multiplier s that
increases during booms and decreases during recessions is
used to dampen the procyclicality of capital requirements;
see also Brunnermeier and Pedersen (2009), Brunnermeier
et al. (2009), and Adrian and Shin (2014). Axiom A4 is
standard for a law invariant risk measure. Axiom A5 states
that the risk measurement of an unbounded random variable
can be approximated by that of bounded random variables.

A function h2 60117→ 60117 is called a distortion func-
tion if h405= 0, h415= 1, and h is increasing; h need not
be left or right continuous. As a direct application of the
results in Schmeidler (1986), we obtain the following rep-
resentation of a risk measure that satisfies Axioms A1–A5.

Lemma 1. Let 4ì1F1 P5 be a probability space on which
a random variable with a uniform distribution on 60117
can be defined. Let X ⊃ L�4ì1F1 P5 be a set of random
variables (X may include unbounded random variables).

A risk measure �2 X → � satisfies Axioms A1–A5 if and
only if there exists a distortion function h4 · 5 such that

�4X5 = s
∫

X d4h �P5 (1)

= s
∫ 0

−�

4h4P4X > x55− 15dx

+ s
∫ �

0
h4P4X > x55dx1 ∀X ∈X1 (2)

where the integral in (1) is the Choquet integral of X with
respect to the distorted nonadditive probability h�P4A5 2=
h4P4A55, ∀A ∈F.

Proof. See E-Companion EC.1 (available as supplemental
material at http://dx.doi.org/10.1287/opre.2016.1539). �

Lemma 1 extends the representation theorem in Wang
et al. (1997) as the requirement of limd→0 �44X − d5+5 =

�4X+5 in their continuity axiom is not needed here.1 Note
that in the case of random variables, the corollary in
Schmeidler (1986) requires the random variables to be
bounded, but Lemma 1 does not; Axiom A5 is automati-
cally satisfied for bounded random variables.

It is clear from (2) that any risk measure satisfying
Axioms A1–A5 is monotonic with respect to first-order
stochastic dominance.2 Many commonly used risk mea-
sures are special cases of risk measures defined in (2).

Example 1. Value-at-risk. VaR is a quantile of the loss
distribution at some predefined probability level. More pre-
cisely, let X be the random loss with general distribution
function FX4 · 5, which may not be continuous or strictly
increasing. For a given � ∈ 40117, VaR of X at level � is
defined as the left �-quantile of F :

VaR�4X5 2= q−

� 4F 5 2= F −1
X 4�5= inf8x �FX4x5¾ �90 (3)

For �= 0, VaR of X at level � is defined to be VaR04X5 2=
inf8x �FX4x5 > 09 and VaR04X5 is equal to the essential
infimum of X. For � ∈ 40117, � in (2) with s = 1 is equal
to VaR� if h4x5 2= 18x>1−�9; � in (2) with s = 1 is equal to
VaR0 if h4x5 2= 18x=19. VaR is monotonic with respect to
first-order stochastic dominance.

Example 2. Expected shortfall (ES). For� ∈ 60115, ES ofX
at level� is defined as the mean of the�-tail distribution ofX
(Tasche 2002, Rockafellar and Uryasev 2002), i.e.,

ES�4X5 2= mean of the �-tail distribution of X

=

∫ �

−�

x dF�1X4x51 � ∈ 601151

where F�1X4x5 is the �-tail distribution defined as (Rocka-
fellar and Uryasev 2002):

F�1X4x5 2=











01 for x < VaR�4X5

FX4x5−�

1 −�
1 for x¾VaR�4X50

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
3.

89
.9

0.
98

] 
on

 0
1 

Ju
ly

 2
01

7,
 a

t 0
2:

19
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 

http://dx.doi.org/10.1287/opre.2016.1539


Kou and Peng: On the Measurement of Economic Tail Risk
Operations Research 64(5), pp. 1056–1072, © 2016 INFORMS 1059

For � = 11ES of X at level � is defined as ES14X5 2=
F −1
X 415. If the loss distribution FX is continuous, then F�1X

is the same as the conditional distribution of X given that
X ¾ VaR�4X5; if FX is not continuous, then F�1X4x5 is a
slight modification of the conditional loss distribution. For
� ∈ 60115, �4X5 in (2) with s = 1 is equal to ES�4X5 if

h4x5=











x

1 −�
1 x¶ 1 −�1

11 x > 1 −�0

For � = 1, �4X5 in (2) with s = 1 is equal to ES14X5 if
h4x5= 18x>09.

Example 3. Median shortfall (MS). As we will see later,
expected shortfall has several statistical drawbacks includ-
ing nonelicitability and nonrobustness. To mitigate the
problems, one may simply use median shortfall. In con-
trast to ES, which is the mean of the tail loss distribution,
MS is the median of the same tail loss distribution. More
precisely, MS of X at level � ∈ 60115 is defined as (Kou
et al. 2013)3

MS�4X5 2= median of the �-tail distribution of X

= F −1
�1X

(

1
2

)

= inf
{

x
∣

∣F�1X4x5¾ 1
2

}

0

For �= 1, MS at level � is defined as MS14X5 2= F −1
X 415.

Therefore, MS at level � can capture the tail risk and con-
siders both the size and likelihood of losses beyond the VaR
at level �, because it measures the median of the loss size
conditional on that the loss exceeds the VaR at level �. It
can be shown that4

MS�4X5= VaR41+�5/24X51 ∀X1 ∀� ∈ 601170

Hence, �4X5 in (2) with s = 1 is equal to MS�4X5 if
h4x5 2= 18x>41−�5/29.

Since MS� = VaR41+�5/2, MS� does not quantify the risk
beyond VaR41+�5/2. However, it is also difficult to know
the precise degree to which ES� quantifies the risk beyond
VaR41+�5/2; in fact, just as MS�, ES� can also fail to reveal
large loss beyond VaR41+�5/2. For example, fix c 2= VaR�

and consider a sequence of �-tail distributions F�1n that are
mixtures of translated exponential distributions and point
mass distributions, which are defined by

F�1n4x5 2=











01 for x < c

41 −�4n5541 − e−�4x−c55

+�4n518n¶x91 for x¾ c1

(4)

where �1�> 0, �4n5 2=�/4n− c− 41/�55.
In other words, F�1n is the mixture of c + exp4�5 (with

probability 41 −�4n55) and the point mass �n (with prob-
ability �4n5). Under F�1n, a large loss with size n occurs
with a small probability �4n5. For each n, ES�1n, which
is the mean of F�1n, is always equal to c + � + 1/�;
hence, ES� fails in the same way as MS� regarding the

detection of the large loss with size n, which may occur
beyond VaR41+�5/2. This example shows that the degree to
which ES� quantifies the risk beyond VaR41+�5/2 might also
be limited. After all, MS� and ES� are, respectively, the
median and the mean of the same �-tail loss distribution.
The information contained in the mean of a distribution
might not be more than that contained in the median of the
same distribution, and vice versa.

Example 4. Generalized spectral risk measures. A gener-
alized spectral risk measure is defined by

�ã4X5 2=
∫

40117
F −1
X 4u5dã4u51 (5)

where ã is a probability measure on 40117. The class of
risk measures represented by (2) includes and are strictly
larger than the class of generalized spectral risk measures,
as they all satisfy Axioms A1–A5.5 A special case of (5)
is the spectral risk measure (Acerbi 2002, Definition 3.1),
defined as

�4X5=

∫

40115
F −1
X 4u5�4u5du1 (6)

where �4 · 5 is increasing, nonnegative, and
∫ 1

0 �4u5du= 1.
Because of the requirement that � is increasing, the class

of spectral risk measure is much smaller than the class of
generalized spectral risk measure defined in (5). The dis-
tinction between the spectral risk measure and that in (5)
is that the former is convex but the latter may not be con-
vex. The convexity requires that the function � in (6) is an
increasing function. The MINMAXVAR risk measure pro-
posed in Cherny and Madan (2009) for the measurement
of trading performance is a special case of the spectral
risk measure, corresponding to a distortion function h4x5=

1 − 41 − x1/41+�551+� in (2) with s = 1, where � ¾ 0 is a
constant.

The class of risk measures satisfying Axioms A1–A5 and
the class of law-invariant coherent (convex) risk measures
have nonempty intersections but no one is the subset of
the other. For example, expected shortfall belongs to both
classes; VaR belongs to the former but not the latter. The
class of risk measures satisfying Axioms A1–A5 include
the class of law-invariant spectral risk measures as a strict
subset. For example, VaR belongs to the former but not the
latter. The class of risk measures satisfying Axioms A1–A5
is the same as the class of “distortion risk measure” pro-
posed in Wang et al. (1997). The distortion risk measures
sometimes refer to the class of risk measures defined in (5).
As we point out in Example 4, the class of risk measures
defined in (5) is a strict subset of the class of risk measures
satisfying Axioms A1–A5.

If a risk measure � satisfies Axiom A4 (law invariance),
then �4X5 only depends on FX ; hence, � induces a sta-
tistical functional that maps a distribution FX to a real
number �4X5. For simplicity of notation, we still denote
the induced statistical functional as �. Namely, we will
use �4X5 and �4FX5 interchangeably in the sequel.
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2.2. Elicitability

The measurement of risk of X using � may be viewed
as a point forecasting problem, because the risk measure-
ment �4X5 (or �4FX5) summarizes the distribution FX by
a real number �4X5, just as a point forecast for X does.
In practice, the true distribution FX is unknown and one
has to estimate the unknown true value �4FX5. As one may
come up with different procedures to forecast �4FX5, it is
an important issue to evaluate which procedure provides a
better forecast of �4FX5.

The theory of elicitability provides a decision-theoretic
foundation for effective evaluation of point forecasting pro-
cedures. Suppose one wants to forecast the realization of
a random variable Y using a point x, without knowing
the true distribution FY . The expected forecasting error is
given by

ES4x1Y 5=

∫

S4x1 y5dFY 4y51

where S4x1 y52 �2 →� is a forecasting objective function,
e.g., S4x1 y5 = 4x − y52 or S4x1 y5 = �x − y�. The optimal
point forecast corresponding to S is

�∗4FY 5= arg min
x

ES4x1Y 50

For example, when S4x1 y5= 4x−y52 and S4x1 y5= �x−y�,
the optimal forecast is the mean functional �∗4FY 5=E4Y 5
and the median functional �∗4FY 5= F −1

Y 4 1
2 5, respectively.

A statistical functional � is elicitable with respect to a
specified class of distributions P if there exists a fore-
casting objective function S such that for any distribution
F ∈P, minimizing the expected forecasting error yields
�4F 5. Many statistical functionals are elicitable. For exam-
ple, the median functional is elicitable, as minimizing the
expected forecasting error with S4x1 y5= �x− y� yields the
median functional. If � is elicitable, then one can evaluate
two point forecasting methods by comparing their respec-
tive expected forecasting error ES4x1Y 5. As FY is unknown,
the expected forecasting error can be approximated by the
average 41/n5

∑n
i=1 S4xi1 Yi5, where Y11 0 0 0 1 Yn are samples

that have the distribution FY and x11 0 0 0 1 xn are the corre-
sponding point forecasts.

If a statistical functional � is not elicitable, then for any
objective function S, the minimization of the expected fore-
casting error does not yield the true value �4F 5. Hence, one
cannot tell which one of competing point forecasts for �4F 5
performs the best by comparing their forecasting errors, no
matter what objective function S is used.

The concept of elicitability dates back to the pioneer-
ing work of Savage (1971), Thomson (1979), and Osband
(1985) and is further developed by Lambert et al. (2008)
and Gneiting (2011, p. 749), who contends that “in issuing
and evaluating point forecasts, it is essential that either the
objective function (i.e., the function S) be specified ex ante,
or an elicitable target functional be named, such as an expec-
tation or a quantile, and objective functions be used that are
consistent for the target functional.” Engelberg et al. (2009)

also points out the critical importance of the specification
of an objective function or an elicitable target functional. In
Gneiting (2011, Definition 2) defines the elicitability for a
set-valued statistical functional T as follows.

Definition 1 (Definition 2 in Gneiting (2011)). A set-
valued statistical functional T is elicitable with respect to a
class of distributions P if there exists a forecasting objec-
tive function S2 �2 →� such that

T 4F 5= arg min
x

∫

S4x1 y5dF 4y51 ∀F ∈P0 (7)

In the statistics literature, the �-quantile is defined as
a set-valued statistical functional that maps a distribu-
tion F to the set 8x � limy↑x F 4y5 ¶ � ¶ F 4x59 = 6q−

� 4F 5,
q+
� 4F 57, where q−

� 4F 5 2= inf8x �F 4x5 ¾ �9 and q+
� 4F 5 2=

inf8x �F 4x5 > �9 are, respectively, the left �-quantile and
the right �-quantile of F . It has been shown (see, e.g.,
Gneiting 2011, Theorem 9) that the �-quantile as a set-
valued statistical functional is elicitable with respect to

D1 2=
{

F �F is a distribution on � and has
finite first moment

}

1 (8)

and the corresponding forecasting objective function can be
defined as

S�4x1 y5= 418x¾y9 −�54x− y50 (9)

In the present paper, we are concerned with the measure-
ment of risk, which is a single-valued statistical functional.
In the finance literature (see, e.g., Artzner et al. 1999, Defi-
nition 3.3), the VaR at level � is defined as VaR� 2= q−

� , i.e.,
the left �-quantile. As a single-valued statistical functional,
VaR� = q−

� is elicitable with respect to D1 ∩ 8F �q−
� 4F 5 =

q+
� 4F 59 but not elicitable with respect to D1, because for

those F with q−
� 4F 5 < q+

� 4F 5, arg minx

∫

S�4x1 y5dF 4y5
is an interval 6q−

� 4F 51 q
+
� 4F 57 instead of a single point;

this is a minor technical nuisance because for any
given F , VaR�4F 5 = arg minx

∫

S�4x1 y5dF 4y5 holds for
all � ∈ 40115 except for a countable set of � at which
q−
� 4F 5 < q+

� 4F 5. To avoid such a minor technical nuisance,
we slightly generalize the definition of elicitability in Defi-
nition 1 to define the general elicitability for a single-valued
statistical functional as follows.

Definition 2. A single-valued statistical functional �4 · 5
is general elicitable with respect to a class of distribu-
tions P if there exists a forecasting objective function
S2 �2 →� such that

�4F 5 = min
{

x
∣

∣

∣

x ∈ arg min
x

∫

S4x1 y5dF 4y5

}

1

∀F ∈P0 (10)

In the definition, we only require that S satisfies the con-
dition that

∫

S4x1 y5dF 4y5 is well defined and finite for
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any F ∈ P. We do not need other conditions such as con-
tinuity or smoothness on S. In Theorem 1 in Section 2.3,
we will show that VaR� is general elicitable with respect
to D1, which is consistent with the fact that �-quantile as
a set-valued statistical functional is elicitable (in the sense
of Definition 1) with respect to D1 and thus eliminates the
aforementioned minor technical nuisance.

We have the following simple lemma showing that the
definition of the general elicitability coincides with and
generalizes the definition of elicitability in Definition 1.

Lemma 2. If a single-valued statistical functional �4 · 5 is
elicitable (in the sense of Definition 1) with respect to a
class of distributions P, then it is general elicitable with
respect to P.

Proof. If �4 · 5 is elicitable with respect to a class of dis-
tributions P, then there exists a forecasting objective func-
tion S such that (7) holds, which implies that (10) holds.
Therefore, �4 · 5 is general elicitable with respect to P. �

2.3. Main Result

Let Ddisc be the set of discrete distributions having positive
probabilities only on a finite number of values. The fol-
lowing Theorem 1 shows that value at risk and the mean
functional are the only risk measures that (i) are general
elicitable with respect to Ddisc; and (ii) have the decision-
theoretic foundation of Choquet expected utility (i.e., satis-
fying Axioms A1–A5). In particular, value at risk at level
41+�5/2, which is the median shortfall at level �, provides
a precise description of the average size of loss beyond
VaR� by the median of the tail loss distribution; whereas
the mean functional captures the tail risk in the sense that
knowing E4L5 leads to an upper bound 41/x5E4L5 for the
tail probability P4L> x5 if L¾ 0.6

Theorem 1. Let 4ì1F1 P5 be a probability space on
which a random variable with a uniform distribution on
60117 can be defined. Let �2 X→� be a risk measure that
satisfies Axioms A1–A5 and X⊃L�4ì1F1 P5. Let P� 2=
8FX �X ∈X9 and let Ddisc be the set of discrete distributions
that have positive probabilities only on a finite number of
values. Then, �4 · 5 (viewed as a single-valued statistical
functional on P�) is general elicitable with respect to Ddisc

if and only if one of the following two cases holds:
(i) � = VaR� for some � ∈ 40117 (noting that MS� =

VaR4�+15/2 for � ∈ 60117). Here VaR� is a single val-
ued functional defined as VaR�4F 5 2= q−

� 4F 5= inf8x �F 4x5
¾ �9.

(ii) �4F 5=
∫

x dF 4x5, ∀F .
Furthermore, VaR1 is general elicitable with respect to

D� 2= 8FX �X ∈ L�4ì1F1 P59, and for any � ∈ 40115,
VaR� and the mean functional

∫

x dF 4x5 are general elic-
itable with respect to a larger class D1 defined in (8).

Proof. See E-Companion EC.2. �

Remark 1. Since Ddisc ⊂ D�, general elicitability with
respect to D� implies general elicitability with respect
to Ddisc; in addition, both risk measures in case (i) and case
(ii) are general elicitable with respect to D�. Hence, Theo-
rem 1 will also hold if Ddisc in the statement of Theorem 1
is replaced by D�.

The major difficulty of the proof lies in that the distortion
function h4 · 5 in the representation Equation (2) of risk
measures satisfying Axioms A1–A5 can have various kinds
of discontinuities on 60117; in particular, the proof is not
based on any assumption on left or right continuity of h4 · 5.
The outline of the proof is as follows. First, we show that
a necessary condition for � to be general elicitable with
respect to P is that � has convex level sets with respect
to P, i.e., �4F15= �4F25 and �F1 +41−�5F2 ∈P imply that
�4F15= �4�F1 + 41 −�5F25, ∀� ∈ 40115, ∀F11 F2 ∈P. The
second and the key step is to prove the following theorem.

Theorem 2. Let Ddisc be the class of discrete distributions
that have positive probabilities only on a finite number of
values. Let h be a distortion function defined on 60117 and
let �4 · 5 be defined as in (2) with s = 1. Then, �4 · 5 has
convex level sets with respect to Ddisc if and only if one of
the following four cases holds:

(i) There exists c ∈ 60117, such that � = cVaR0 +

41 − c5VaR1, where VaR04F 5 2= inf8x �F 4x5 > 09 and
VaR14F 5 2= inf8x �F 4x5 = 19 (i.e., h4u5 = 1 − c,
∀u ∈ 40115).

(ii) There exists � ∈ 40115 such that �4F 5 = VaR�4F 5,
∀F (i.e., h4u5= 18u>1−�9).

(iii) There exists � ∈ 40115 and c ∈ 60115 such that

�4F 5= cq−

� 4F 5+ 41 − c5q+

� 4F 51 ∀F 1 (11)

where q−
� 4F 5 2= inf8x �F 4x5 ¾ �9 and q+

� 4F 5 2=
inf8x �F 4x5 > �9 (i.e., h4u5= 41−c5 ·18u=1−�9 +18u>1−�9).

(iv) �4F 5=
∫

x dF 4x5, ∀F (i.e., h4u5= u).
Furthermore, the risk measures � listed in cases (i)–(iv)

have convex level sets with respect to P� ⊇ D� (P� is
defined in Theorem 1 and D� 2= 8FX �X ∈L�4ì1F1 P59).

Proof. See E-Companion EC.2. �

Lastly, we examine the general elicitability of the four
kinds of risk measures in Theorem 2 with respect to Ddisc;
in particular, we show that � = cVaR0 +41 − c5VaR1 for
c ∈ 40117 and � = cq−

� + 41 − c5q+
� for c ∈ 60115 are not

general elicitable with respect to Ddisc.

Remark 2. After reading the proof of Theorem 2 (i.e.,
Theorem A.1 in Kou and Peng 2014), Wang and Ziegel
(2015) attempted to provide an alternative proof; however,
that proof is incomplete as it missed the case (i) in the
theorem.

The following Theorem 3, which identifies elicitable risk
measures, is the counterpart of Theorem 1, which identifies
general elicitable risk measures. The conclusion and proof
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of the two theorems are almost identical, which clearly
shows that the general elicitability is just a slight general-
ization of elicitability to avoid minor technical nuisances.

Theorem 3. Let 4ì1F1 P5 be a probability space on
which a random variable with a uniform distribution on
60117 can be defined. Let �2 X → � be a risk measure
that satisfies Axioms A1–A5 and X ⊃ L�4ì1F1 P5. Let
P� 2= 8FX �X ∈X9 and let Ddisc be the set of discrete dis-
tributions that have positive probabilities only on a finite
number of values. Let �0 ∈ 40115 be fixed. Then, �4 · 5
(viewed as a single-valued statistical functional on P�)
is elicitable (in the sense of Definition 1) with respect to
Ddisc ∩ 8F �q−

�0
4F 5 = q+

�0
4F 59 if and only if one of the fol-

lowing two cases holds:
(i) �= VaR�0

= q−
�0

.
(ii) �4F 5=

∫

x dF 4x5, ∀F .
Furthermore, VaR�0

and the mean functional are elic-
itable (in the sense of Definition 1) with respect to a larger
class D1 ∩ 8F �q−

�0
4F 5= q+

�0
4F 59.

Proof. See E-Companion EC.3. �
Remark 3. Since Ddisc ⊂ D�, elicitability with respect
to D� implies elicitability with respect to Ddisc; in addi-
tion, both VaR�0

and the mean functional are elicitable with
respect to D1 ∩8F �q−

�0
4F 5= q+

�0
4F 59⊃D� ∩8F �q−

�0
4F 5=

q+
�0
4F 59. Hence, Theorem 3 will also hold if Ddisc in the

statement of Theorem 3 is replaced by D�.

The key step of the proof of Theorem 3 is to prove
the following Theorem 4, which is a stronger version of
Theorem 2.

Theorem 4. Let Ddisc be the class of discrete distributions
that have positive probabilities only on a finite number of
values. Let h be a distortion function defined on 60117 and
let �4 · 5 be defined as in (2) with s = 1. Let �0 ∈ 40115
be fixed. Then, �4 · 5 has convex level sets with respect to
Ddisc ∩ 8F �q−

�0
4F 5 = q+

�0
4F 59 if and only if one of the fol-

lowing four cases holds:
(i) There exists c ∈ 60117, such that � = cVaR0 +

41 − c5VaR1, where VaR04F 5 2= inf8x �F 4x5 > 09 and
VaR14F 5 2= inf8x �F 4x5 = 19 (i.e., h4u5 = 1 − c,
∀u ∈ 40115).

(ii) There exists � ∈ 40115 such that �4F 5 = VaR�4F 5,
∀F (i.e., h4u5= 18u>1−�9).

(iii) There exists � ∈ 40115 and c ∈ 60115 such that

�4F 5= cq−

� 4F 5+ 41 − c5q+

� 4F 51 ∀F 1 (12)

where q−
� 4F 5 2= inf8x �F 4x5 ¾ �9 and q+

� 4F 5 2=
inf8x �F 4x5 > �9 (i.e., h4u5= 41−c5 ·18u=1−�9 +18u>1−�9).

(iv) �4F 5=
∫

x dF 4x5, ∀F (i.e., h4u5= u).
Furthermore, the risk measures � listed in cases (i)–(iv)

have convex level sets with respect to P� ⊇ D� (P� is
defined in Theorem 3 and D� 2= 8FX �X ∈L�4ì1F1 P59).

Proof. See E-Companion EC.3. �

2.4. Co-Elicitability

The co-elicitability of k ¾ 2 statistical functionals is a
weaker notion of elicitability than the notion of elicitabil-
ity of one statistical functional defined in Definition 1. The
notion of co-elicitability is formulated in Lambert et al.
(2008, Definition 9) as follows:

Definition 3. k ¾ 2 single-valued statistical functionals
�14 · 51 0 0 0 1 �k4 · 5 are called co-elicitable with respect to a
class of distributions P if there exists a forecasting objec-
tive function S2 �k+1 →� such that

4�14F 51 0 0 0 1 �k4F 55

= arg min
4x110001xk5

∫

S4x11 0 0 0 1 xk1 y5dF 4y51 ∀F ∈P0 (13)

The notion of co-elicitability is weaker than that of elic-
itability because: (i) if for each i = 11 0 0 0 1 k, �i is elic-
itable with a corresponding forecasting objective function
Si4·1 ·5, then 4�11 0 0 0 1 �k5 are co-elicitable with the corre-
sponding function S being defined as S4x11 0 0 0 1 xk1 y5 2=
∑k

i=1 Si4xi1 y5; (ii) if 4�11 0 0 0 1 �k5 are co-elicitable, it does
not imply that each �i is elicitable.

Acerbi and Székely (2014) show that 4VaR�, ES�5 are
co-elicitable with respect to a class of distributions P,
which satisfy some restrictive conditions based on an intu-
itive argument; Fissler and Ziegel (2016) show that 4VaR�,
ES�5 are co-elicitable with respect to P= 8F �F has finite
first moment and has unique � quantile9, and the corre-
sponding forecasting objective function S in Definition 3
may be specified as

S4x11 x21 y5 = 418x1>y9 −�54−G14−x15+G14−y55

+
1

1 −�
G24−x2518x1¶y94y− x15

+G24−x254x1 − x25−G24−x251 (14)

where G1 and G2 are strictly increasing continuously dif-
ferentiable functions, G1 is F -integrable for any F ∈ P,
limx→−� G24x5 = 0, and G′

2 = G2, e.g., G14x5 = x and
G24x5= ex.

The co-elicitability of 4VaR�, ES�5 implies that one
can evaluate the performance of different forecasting pro-
cedures that forecast the collection of 4VaR�, ES�5 by
comparing their realized forecasting errors. More precisely,
procedure 1 is considered to better forecast the collection
of 4VaR�, ES�5 than procedure 2 if

1
T

T
∑

t=1

S4var1
t 1 es1

t 1 Yt5 <
1
T

T
∑

t=1

S4var2
t 1 es2

t 1 Yt51 (15)

where 4varit1 esit5 are the forecasts generated by the ith pro-
cedure at time t, i = 112, and Yt is the realized loss at
time t, t = 11 0 0 0 1 T .

The co-elicitability of (ES�1VaR�) does not lead to a
reliable method for evaluating forecasts for ES�. More pre-
cisely, even if procedure 1 better forecasts the collection
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4VaR�1ES�5 than procedure 2 in the sense of (15), pro-
cedure 1 may provide much worse forecast of ES� than
procedure 2; this is illustrated in Example 5 and Example 6
at the end of Section 2.5.2.

Theorem 1 (Theorem 3) identifies all general elicitable
(elicitable) risk measures within the class of risk measures
that satisfy Axioms A1–A5; a counterpart of the problem
studied in Theorems 1 and 3 is the following one: For
k ¾ 2, can we identify all the k-tuple of risk measures
4�11 0 0 0 1 �k5 such that 4�11 0 0 0 1 �k5 are co-elicitable and
each �i satisfies Axioms A1–A5? Because co-elicitability
is weaker than elicitability, the above problem is different
from that studied in Theorems 1 and 3; the answer to the
problem does not imply Theorem 1 or Theorem 3, and The-
orem 1 or Theorem 3 does not provide a complete answer
to the problem.

Some examples of risk measures that satisfy the con-
ditions in the above open problem are provided in
Fissler and Ziegel (2016). In addition to 4VaR�1ES�5,
4VaR�1

1 0 0 0 1VaR�k
1
∑k

i=1 wi ES�i
5 are shown to be co-

elicitable, where 0 < �1 < · · · < �k < 1, 4w11 0 0 0 1wk5 are
any weights satisfying

∑k
i=1 wi = 1 and wi > 0, i = 11 0 0 0 1 k.

However, the complete answer to the open problem is not
known yet; we leave it for future research.

2.5. Backtesting a Risk Measure

As will be shown in the following subsections, there are
three approaches for backtesting a risk measure: (i) the
direct backtest, which tests if the point estimate or point
forecast of the risk measurement under a model is equal to
the unknown true risk measurement; (ii) the indirect back-
test, which can be classified into two kinds: (a) the first kind
of indirect backtests examine if the entire loss distribution,
the entire tail loss distribution, or a collection of statistics
including the risk measure of interest under a model are
equal to the corresponding quantities under the true under-
lying unknown model; (b) the second kind of indirect back-
tests are based on the co-elicitability of a collection of risk
measures; (iii) the forecast evaluation approach based on
the elicitability of the risk measure.

We will also show in the subsections that (i) VaR and
median shortfall can be backtested by all three approaches.
(ii) There have been no direct back-testing methods for
expected shortfall. (iii) Indirect backtesting methods for
expected shortfall have been proposed in the literature. The
first kind of indirect back testing for expected shortfall is
a partial backtesting in the sense that (a) if an indirect
backtesting for expected shortfall is not rejected, it will
imply that the point forecast for expected shortfall will
not be rejected; (b) however, if an indirect backtesting for
expected shortfall is rejected, it will be unclear whether
the point forecast for expected shortfall should be rejected.
The second kind of indirect backtests that are based on the
co-elicitability of 4VaR�1ES�5 cannot answer the question
whether the ES� forecasted under a bank’s model is more
accurate than that forecasted under a benchmark model.

2.5.1. The Direct Backtesting Approach. The direct
back-testing approach is to test whether the risk measure-
ment calculated under a model is equal to the unknown true
value of risk measurement. It concerns whether the point
estimate or point forecast of the risk measure is acceptable
or not. For example, suppose a bank reports that the VaR99%

of its trading book is one billion. The direct backtesting
approach answers the question whether the single number
one billion is acceptable or not.

More precisely, suppose the loss of a bank on the tth day
is Lt , t = 1121 0 0 0 1 T . On each day t−1, the bank forecasts
the risk measurement � of Lt based on the information
available on day t−1, which is denoted as Ft−1. Let Gt � t−1

denote the bank’s model of the conditional distribution of
Lt given Ft−1, and let �Gt � t−14Lt5 denote the risk measure-
ment of Lt under the model Gt � t−1. Suppose the unknown
true conditional distribution of Lt given Ft−1 is Ft � t−1 and
the true risk measurement is denoted as �Ft � t−14Lt5. Then,
the direct backtesting of the risk measure � is to test

H02 �
Gt � t−14Lt5= �Ft � t−14Lt51 ∀ t = 11 0 0 0 1 T 3

H12 otherwise0
(16)

For � = VaR�, the null hypothesis in (16) is equivalent
to that It 2= 18Lt>VaR�4Lt59

, t = 11 0 0 0 1 T , are i.i.d. Bernoulli
(1 −�) random variables (Christoffersen 1998, Lemma 1).
Based on such observation, Kupiec (1995) propose the
proportion of failure test for backtesting VaR, which is
closely related to the “traffic light” approach of back test-
ing VaR adopted in the Basel Accord (Basel Commit-
tee on Banking Supervision 1996, 2006). Christoffersen
(1998) proposes conditional coverage and independence
tests for VaR within a firsft-order Markov process model.
For more recent developments on the backtesting of VaR,
see Lopez (1999a, 1998), Engle and Manganelli (2004),
Christoffersen and Pelletier (2004), Haas (2005), Campbell
(2006), Christoffersen (2010), Berkowitz et al. (2011),
Gaglianone et al. (2011), Holzmann and Eulert (2014), etc.

As MS� = VaR41+�5/2, the backtesting of median shortfall
is exactly the same as that of VaR. In contrast, there have
been no direct back testing methods for expected shortfall
in the existing literature. The reason might be simple: The
null hypothesis for direct back testing expected shortfall is
that ES

Gt � t−1
� 4Lt5 = ES

Ft � t−1
� 4Lt5. It might be difficult (if not

impossible) to find a statistic whose distribution is known
under the null hypothesis. In contrast, the distribution of
the indicator random variable It = 18Lt>VaR�4Lt59

is known
under the null hypothesis for direct back testing VaR, and
hence It can be used to construct test statistic for direct
back testing VaR.

2.5.2. The Indirect Backtesting Approach. There are
two kinds of indirect backtesting approaches. The first
kind of indirect backtesting approach concerns whether the
bank’s model of the entire loss distribution is the same
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as the unknown true loss distribution. More precisely, the
indirect back-testing approach is to test

H02 Gt � t−14x5=Ft � t−14x51 ∀x∈�1∀ t=110001T 3

H12 otherwise0
(17)

If the null hypothesis is not rejected, then it will imply
that �Gt � t−14Lt5= �Ft � t−14Lt5, i.e., the risk measurement will
not be rejected; however, if the null hypothesis is rejected,
then it will be unclear whether the point forecast �Gt � t−14Lt5
should be rejected or not. Therefore, the kind of indirect
back-testing approach can only serve as a partial back test-
ing of a particular risk measure. For example, suppose a
bank reports that the ES99% of its trading book is one bil-
lion. Using the indirect backtesting approach, one can test
the bank’s model of the entire loss distribution. If the test is
not rejected, then it will imply that the number one billion
is acceptable; however, if the test is rejected, then it will
be unclear if the number one billion should be accepted or
rejected.

Strictly speaking, this indirect back-testing approach
shall not be regarded as an approach for backtesting a par-
ticular risk measure, because the backtesting has nothing
to do with any particular risk measure, although the test
has partial implications on the acceptability of the point
forecast of a particular risk measure.

This kind of indirect backtesting approach has been pro-
posed for backtesting expected shortfall in the literature.
Berkowitz (2001) proposes likelihood ratio tests based on
censored Gaussian likelihood for the test (17). Kerkhof
and Melenberg (2004) propose a functional delta method
for testing the Hypothesis (17). Acerbi and Székely (2014)
propose three indirect tests for back testing ES�. The first
two tests are to test the entire tail loss distribution under
the assumption that VaR� has already been tested and that
L11 0 0 0 1LT are independent:

H02 Gt � t−11�4x5=Ft � t−11�4x51 ∀x∈�1∀ t=110001T 3

H12 otherwise1
(18)

where Gt � t−11� and Ft � t−11� and the �-tail distribution of
Gt � t−1 and Ft � t−1, respectively, (see Example 2 for defini-
tion of �-tail distribution). The third test is the same as the
test (17). All the three tests proposed by the authors require
that one knows how to simulate random samples with dis-
tribution Gt � t−14 · 5 in order to simulate the test statistic and
to calculate the p value of the test. Costanzino and Curran
(2015) propose an approach to indirectly back test ES� by
testing

H02
∫ 1
�

18Lt¶VaRp4Lt59
dp1 t=110001T 1 are i.i.d.,

VaR
Ft � t−1
p 4Lt5=VaR

Gt � t−1
p 4Lt51

∀p∈ 6�1151t=110001T

H12 otherwise0

(19)

This approach does not need to simulate random sam-
ples under the null hypothesis in order to calculate the p
value. McNeil and Frey (2000) assume that the loss process
8Lt1 t = 11 0 0 0 1 T 9 follows the dynamics Lt = mt + stZt ,
where mt and st are, respectively, the conditional mean
and conditional standard deviation, and Zt is a strict white
noise. Under this assumption, they propose to back test ES�

by testing the hypothesis

H02 m
Gt � t−1
t =mt1 s

Gt � t−1
t = st1

VaR
Gt � t−1
� 4Lt5= VaR

Ft � t−1
� 4Lt51

ES
Gt � t−1
� 4Lt5= ES

Ft � t−1
� 4Lt51 ∀ t3

H12 otherwise0

(20)

This test is an indirect test for ES� because if the null
hypothesis is rejected, it is not clear if the claim ES

Gt � t−1
� 4Lt5

= ES
Ft � t−1
� 4Lt51∀ t should be rejected or not.

The second kind of indirect back tests are those based
on the co-elicitability of a collection of risk measures. For
example, let 4VaRBen

� 4Lt51ESBen
� 4Lt55, t = 11 0 0 0 1 T 9, be the

4VaR�1ES�5 forecasted under a benchmark model such as
a standard model specified by the regulator. Fissler et al.
(2015) propose the following two indirect backtests for
backtesting ES�:

H−
0 2 Et−1

[

S4VaR
Gt � t−1
� 4Lt51ES

Gt � t−1
� 4Lt51Lt5

]

¾Et−1

[

S4VaRBen
� 4Lt51ESBen

� 4Lt51Lt5
]

1 ∀ t

H−
1 2 otherwise3

H+

0 2 Et−1

[

S4VaR
Gt � t−1
� 4Lt51ES

Gt � t−1
� 4Lt51Lt5

]

¶Et−1

[

S4VaRBen
� 4Lt51ESBen

� 4Lt51Lt5
]

1 ∀ t

H+

1 2 otherwise1

(21)

where S4·1 ·1 ·5 is the forecasting objective function defined
in (14) with G14x5= x and G24x5= ex/41 + ex5.

These tests are indirect back tests for ES� because no
matter if these tests are rejected or not, we do now know
whether ES

Gt � t−1
� is more accurate than ESBen

� 4Lt5. In fact,
these tests are not able to find out which model gives a
more accurate forecast for ES�, as is shown in Example 5.

Example 5. Suppose the true distribution of a bank’s loss
random variable L is N4�1�25. Let ê�1� denote the dis-
tribution function of L. It can be easily calculated that

E6S4x11 x21L57

= x1ê�1�4x15−

(

�ê�1�4x15−
�

√
2�

e−4x1−�52/42�25

)

−�4x1 −�5+
1

1 −�

e−x2

1 + e−x2

[

�−

(

�ê�1�4x15

−
�

√
2�

e−4x1−�52/42�25

)

− x141 −ê�1�4x155

]

+
e−x2

1 + e−x2
4x1 − x25− log41 + e−x250
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Figure 1. A graph for the counterexample in Example 5.
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Bank’s model: Expected forecast error = E[S(VaR,x ⋅ ES,L)]

Benchmark model: Expected forecast error = E[S(x ⋅ VaR,ES,L)]

Notes. The forecasting error of the bank’s model (i.e., E6S4VaR�, x · ES�1L57) is always smaller than that of the benchmark model (i.e., E6S4x · VaR�,
ES�1L57) for any x ∈ 4005511005; therefore, the tests in (21) will conclude that the bank’s model better forecasts ES� than the benchmark model. However,
the bank’s model always underforecasts ES�, while the benchmark model always truthfully forecasts ES�. Such inconsistency, mainly because of the fact
that co-elicitability does not imply elicitability, shows that the tests in (21) are not able to find out which model gives a more accurate forecast for ES�.
The lower boundary of x is 0.55 because the forecast 4VaR�1 x · ES�5 given by the bank’s model has to satisfy the condition VaR� < x · ES�, which leads
to x > VaR� /ES� = 00460/00838 = 0055.

Let �= −105, � = 100, and �= 00975, which is suggested
in Basel Committee on Banking Supervision (2013). Then
the true value of 4VaR�4L5, ES�4L55 is 4VaR�, ES�5 =

4004601008385. Suppose the forecasts given by a bank’s
model are 4VaR�, x · ES�5 and those given by a bench-
mark model (preferred by the regulator) are 4x · VaR�,
ES�5, where 0 < x < 1; hence, the bank’s model always
underforecasts ES� but the benchmark model always truth-
fully forecasts ES�; therefore, the bank’s model should
be rejected. However, these tests will conclude that the
bank’s model is better than the benchmark model because
the forecasting error of the bank’s model (i.e., E6S4VaR�,
x · ES�1L57) is always smaller than that of the benchmark
model (i.e., E6S4x · VaR�, ES�1L57) for any x ∈ 4005511005.
In other words, even if the bank’s model underforecasts
the ES� by as much as 45%, it will still be wrongly
considered to be better than the benchmark model that
truthfully forecasts ES�, mainly because of the fact that
co-elicitability does not imply elicitability, and some rather
strange behavior of the forecasting objective function S
defined in (14). This is illustrated by Figure 1.

Another drawback of these backtests is that the perfor-
mance of the back tests further deteriorates when the scale
of the loss random variable increases, because the term
G24−x25 in Equation (14) goes to zero as x2 goes to infin-
ity. The consequence is that larger banks can more easily
underreport ES than smaller banks if such backtests are
used for back testing ES�. This is illustrated in Example 6.

Example 6. Suppose there is a larger bank whose loss
random variable is 15 times of the loss L in Example 5.

Thus, the loss random variable of this larger bank has a
normal distribution N4�1�25 with � = −105 × 15, � =

1500. Let �= 00975. Note the true value of 4VaR�1ES�5 is
4VaR�1ES�5 = 4004601008385× 15. Suppose the forecasts
given by a bank’s model are 4VaR�, x · ES�5 and those
given by a benchmark model (preferred by the regulator)
are 4x · VaR�, ES�5. Again, as in Figure 1, Figure 2 shows
that the back tests make the wrong conclusion on which
model better forecasts ES�. In addition, Figure 2 shows that
the forecasting error for the bank’s model almost remains
unchanged when x ∈ 4005511005, which is due to the fact
that when ES� is large enough, the term

E
[

41/41 −�55G24−x · ES�518VaR�<L94L− VaR�5

+G24−x · ES�54VaR� −xES�5−G24−x · ES�5
]

in the expected forecasting error will be so small that the
expected forecasting error will not change much when x
varies. In other words, when the scale of the loss random
variable L is large enough, the expected forecasting error
E6S4VaR�1 x · ES�1L57 becomes insensitive to the value
of x. This counterexample happens again mainly because of
some strange behavior of the forecasting objective function
S defined in (14).

2.5.3. The Backtesting Approach Based on the Elic-
itability of a Risk Measure. The backtesting approach
based on the forecast evaluation framework and elicitability
has been proposed to back test VaR. This approach requires
a benchmark model because the elicitability concerns the
comparison of multiple models rather than the valida-
tion of a single model. Lopez (1999a) proposes to define
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Figure 2. A graph for the counterexample in Example 6.
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Bank’s model: Expected forecast error = E[S(VaR,x ⋅ ES,L)]

Benchmark model: Expected forecast error = E[S(x ⋅ VaR,ES,L)]

Notes. The expected forecasting error of the bank’s model (i.e., E6S4VaR�, x · ES�1L57) in Example 6 almost remains unchanged when x ∈ 4005511005,
because when ES� is large enough, the term E641/41 −�55G24−x · ES�518VaR�<L94L−VaR�5+G24−x · ES�54VaR� −xES�5−G24−x ·ES�57 in the expected
forecasting error will be so small that the expected forecasting error will not change much when x varies. In other words, when the scale of the loss
random variable L is large enough, the expected forecasting error E6S4VaR�, x · ES�1L57 becomes insensitive to the value of x.

the forecasting error for VaR� under the model Gt � t−1 as
∑T

t=1 S4VaR
Gt � t−1
� 4Lt51Lt5, where S4·1 ·5 is a forecast objec-

tive function (loss function). Since VaR� is elicitable with
respect to D1 ∩ 8F �q−

� 4F 5 = q+
� 4F 59, S can be defined as

S�4x1 y5 = 418x¾y9 −�54x − y5. Then, the forecasting error
is compared with a benchmark forecasting error calculated
under a benchmark model to back test VaR�.

In contrast, expected shortfall cannot be back tested by
this approach because it is not elicitable, and therefore, no
function S can be used to define the forecasting error.

3. Extension to Incorporate Multiple Models

The previous section addresses the issue of model uncer-
tainty from the perspective of general elicitability. Follow-
ing Gilboa and Schmeidler (1989) and Hansen and Sargent
(2001, 2007), we further incorporate robustness by consid-
ering multiple models (scenarios). More precisely, we con-
sider m probability measures Pi, i = 11 0 0 0 1m on the state
space 4ì1F5. Each Pi corresponds to one model or one
scenario, which may refer to a specific economic regime
such as an economic boom and a financial crisis. The loss
distribution of a random loss X under different scenarios
can be substantially different. For example, the VaR calcu-
lated under the scenario of the 2007 financial crisis is much
higher than that under a scenario corresponding to a normal
market condition due to the difference of loss distributions.

Suppose that under the ith scenario, the measurement of
risk is given by �i that satisfies Axioms A1–A5. Then by
Lemma 1, �i can be represented by �i4X5=

∫

X d4hi �Pi5,
where hi is a distortion function, i = 11 0 0 0 1m. We then

propose the following risk measure to incorporate multiple
scenarios:

�4X5= f 4�14X51�24X51 0 0 0 1 �m4X551 (22)

where f 2 �m →� is called a scenario aggregation function.
We postulate that the scenario aggregation function f

satisfies the following axioms:

Axiom B1. Positive homogeneity and translation scaling:
f 4ax̃+b15= af 4x̃5+sb1 ∀ x̃ ∈�m1∀a¾ 01∀b ∈�, where
s > 0 is a constant and 1 2= 41111 0 0 0 115 ∈�m.

Axiom B2. Monotonicity: f 4x̃5 ¶ f 4ỹ5, if x̃ ¶ ỹ, where
x̃¶ ỹ means xi ¶ yi1 i = 11 0 0 0 1m.

Axiom B3. Uncertainty aversion: if f 4x̃5= f 4ỹ5, then for
any � ∈ 40115, f 4�x̃+ 41 −�5ỹ5¶ f 4x̃5.

Axiom B1 states that if the risk measurement of Y is an
affine function of that of X under each scenario, then the
aggregate risk measurement of Y is also an affine function
of that of X. Axiom B2 states that if the risk measurement
of X is less than or equal to that of Y under each scenario,
then the aggregate risk measurement of X is also less than
or equal to that of Y . Axiom B3 is proposed by Gilboa and
Schmeidler (1989, p. 145) to “capture the phenomenon of
hedging;” it is used as one of the axioms for the maxmin
expected utility that incorporates robustness.

Lemma 3. A scenario aggregation function f 2 �m → �
satisfies Axioms B1–B3 if and only if there exists a set of
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weights W = 8w̃9 ⊂ �m with each w̃ = 4w11 0 0 0 1wm5 ∈ W
satisfying wi ¾ 0 and

∑m
i=1 wi = 1, such that

f 4x̃5= s · sup
w̃∈W

{ m
∑

i=1

wixi

}

1 ∀ x̃ ∈�m0 (23)

Proof. First, we show that Axioms B1–B3 are equivalent
to Kou et al. (2013, Axioms C1–C4) with ni = 1, i = 11
0 0 0 1m. Axioms B1 and B2 are the same as the Axioms C1
and C2, respectively. Axiom C4 holds for any function when
ni = 1, i = 11 0 0 0 1m. Axioms C1 and C3 apparently imply
Axiom B3. We will then show that Axiom B1 and B3
imply Axiom C3. In fact, For any x̃ and ỹ, it follows from
Axiom B1 that f 4x̃ − f 4x̃5/s5 = f 4ỹ − f 4ỹ5/s5 = 0. Then,
it follows from Axioms B1 and B3 that

f 4x̃+ ỹ5− f 4x̃5− f 4ỹ5

= f
(

x̃− f 4x̃5/s + ỹ− f 4ỹ5/s
)

= 2f
(

1
2 4x̃− f 4x̃5/s5+

1
2 4ỹ− f 4ỹ5/s5

)

¶ 2f 4x̃− f 4x̃5/s5= 00

Hence, Axiom C3 holds. Therefore, Axioms B1–B3 are equi-
valent to Axioms C1–C4, and hence the conclusion of the
lemma follows from (Kou et al. 2013, [Theorem 3.1]). �

In the representation (23), each weight w̃ ∈ W can be
regarded as a prior probability on the set of scenarios; more
precisely, wi can be viewed as the likelihood that the sce-
nario i happens.

Lemmas 1 and 3 lead to the following class of risk
measures:7

�4X5= s · sup
w̃∈W

{ m
∑

i=1

wi

∫

X d4hi �Pi5

}

0 (24)

By Theorem 1, the requirement of general elicitability
under each scenario leads to the following tail risk measure:

�4X5= s · sup
w̃∈W

{ m
∑

i=1

wi MSi1�i
4X5

}

1 (25)

where MSi1�i
4X5 is the median shortfall of X at confi-

dence level �i calculated under the ith scenario (model).
The risk measure � in (25) addresses the issue of model
uncertainty and incorporates robustness from two aspects:
(i) under each scenario i, MSi1�i

is general elicitable with
respect to D1 and statistically robust (Kou et al. 2006, 2013,
Cont et al. 2010); (ii) � incorporates multiple scenarios and
multiple priors on the set of scenarios.

4. Application to Basel Accord Capital Rule
for Trading Books

What risk measure should be used for setting capital require-
ments for banks is an important issue that has been under
debate since the 2007 financial crisis. The Basel II uses
a 99.9% VaR for setting capital requirements for banking

books of financial institutions (Gordy 2003). The Basel II
capital charge for the trading book on the tth day is speci-
fied as �t4Xt1Xt−11 0 0 0 1Xt−595 2= st max841/st5VaRt−14Xt5,
41/605

∑60
i=1 VaRt−i4Xt−i+159, where Xt−i is the trading book

loss on the 4t − i5th day; st ¾ 3 is a constant that is speci-
fied by the regulator based on the back-testing result of the
institution’s VaR model; VaRt−i4Xt−i+15 is the 10-day VaR
at 99% confidence level calculated on day t − i, which cor-
responds to the ith model, i = 11 0 0 0 160. Define the 61st
model under which X = 0 with probability one. Assume
that the trading book composition and the size of the
positions remain the same over the 60-day periods. Then,
Xt1Xt−11 0 0 0 1Xt−59 can be regarded as the realization of
the same random loss under different distributions. In such
cases, the Basel II risk measure is a special case of the
class of risk measures considered in (25); it incorporates
61 models and two priors: one is w̃ = 41/s1 1 0 0 0 1 11 − 1/s5,
the other w̃ = 41/601 /601 0 0 0 11/60105. The Basel 2.5 risk
measure (Basel Committee on Banking Supervision 2009)
mitigates the procyclicality of the Basel II risk measure by
incorporating the “stressed VaR” calculated under stressed
market conditions such as financial crisis. The Basel 2.5 risk
measure can also be written in the form of (25).

In a consultative document released by the Bank for
International Settlement (Basel Committee on Banking
Supervision 2013, p. 3), the Basel Committee proposes
to “move from value-at-risk to expected shortfall,” which
“measures the riskiness of a position by considering
both the size and the likelihood of losses above a cer-
tain confidence level.” The proposed new Basel (called
Basel 3.5) capital charge for the trading book measured
on the tth day is defined as �t4Xt1Xt−11 0 0 0 1Xt−595 2=
smax841/s5ESt−14Xt5, 41/605

∑60
i=1 ESt−i4Xt−i+159, where

ESt−i4Xt−i+15 is the ES at 97.5% confidence level calcu-
lated on day t − i, i = 11 0 0 0 160. Assume that the trading
book composition and the size of the positions remain the
same over the 60-day periods. Then, the proposed Basel 3.5
risk measure is a special case of the class of risk measures
considered in (24).8

The major argument for the change from VaR to ES is
that ES better captures tail risk than VaR. The statement
that the 99% VaR is 100 million dollars does not carry
information as to the size of loss in cases when the loss
does exceed 100 million; on the other hand, the 99% ES
measures the mean of the size of loss given that the loss
exceeds the 99% VaR.

Although the argument sounds reasonable, ES is not the
only risk measure that captures tail risk; in particular, an
alternative risk measure that captures tail risk is MS, which,
in contrast to expected shortfall, measures the median rather
than the mean of the tail loss distribution. For instance, in
the aforementioned example, if we want to capture the size
and likelihood of loss beyond the 99% VaR level, we can
use either ES at the 99% level, or, alternatively, MS at the
99% level.
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Table 1. The comparison of the forecasts of one-day MS and ES of a portfolio of S&P 500 stocks that is worth 1,000,000
dollars on November 26, 2012.

ES MS

� (%) ES�11 ES�12 ES�12 −ES�11 MS�11 MS�12 MS�12 − MS�11

ES�12 −ES�11

MS�12 − MS�11
− 1

97.0 19,956 21,699 1,743 19,070 19,868 798 11804%
97.5 20,586 22,690 2,104 19,715 20,826 1,111 8903%
98.0 21,337 23,918 2,581 20,483 22,011 1,529 6808%
98.5 22,275 25,530 3,254 21,441 23,564 2,123 5303%
99.0 23,546 27,863 4,317 22,738 25,807 3,070 4006%
99.5 25,595 32,049 6,454 24,827 29,823 4,996 2902%

Notes. ES�1 i and MS�1 i are the ES and MS at level � calculated under the ith model, respectively, i = 112. It is clear that the change of ES under the two
models (i.e., ES�12 −ES�11) is much larger than that of MS (i.e., MS�12 − MS�11).

MS may be preferable than ES for setting capital require-
ments in banking regulation because (i) MS is general elic-
itable but ES is not; and (ii) MS is robust but ES is not
(Kou et al. 2006, 2013, Cont et al. 2010). Kou et al. (2013)
show that robustness is indispensable for external risk mea-
sures used for legal enforcement such as calculating capital
requirements.

To further compare the robustness of MS with ES, we
carry out a simple empirical study on the measurement
of tail risk of S&P 500 daily return. We consider two
IGARCH(1, 1) models similar to the model of RiskMetrics:

• Model 1. IGARCH(1, 1) with conditional distribution
being Gaussian

rt =�+�t�t1 �2
t = ��2

t−1 + 41 −�5r2
t−11 �t

d
∼N401150

• Model 2. The same as model 1 except that the condi-
tional distribution is specified as �t

d
∼ t� , where t� denotes

t distribution with degree of freedom �.
We, respectively, fit the two models to the historical data
of daily returns of the S&P 500 Index during 1/2/1980–
11/26/2012 and then forecast the one-day MS and ES of a
portfolio of S&P 500 stocks that is worth 1,000,000 dollars
on 11/26/2012. The comparison of the forecasts of MS and
ES under the two models is shown in Table 1, where ES�1 i

and MS�1 i are the ES� and MS� calculated under the ith
model, respectively, i = 112. It is clear from the table that
the change of ES under the two models (i.e., ES�12 −ES�11)
is much larger than that of MS (i.e., MS�12 − MS�11), indi-
cating that ES is more sensitive to model misspecification
than MS.

5. Comments

5.1. Criticism of Value-at-Risk

As pointed out by Aumann and Serrano (2008, p. 813),
“like any index or summary statistic1 0 0 0 , the riskiness
index summarizes a complex, high-dimensional object by
a single number. Needless to say, no index captures all the
relevant aspects of the situation being summarized.” Below
are some popular criticisms of VaR in the literature.

(i) The VaR at level � does not provide information
regarding the size of the tail loss distribution beyond VaR�.
However, the median shortfall at level � does address this
issue by measuring the median size of the tail loss distri-
bution beyond VaR�.

(ii) There is a pathological counterexample that, for
some level �, the VaR� of a fully concentrated portfolio
might be smaller than that of a fully diversified portfo-
lio, which is against the economic intuition that diversi-
fication reduces risk; see Example 6.7 in McNeil et al.
(2005, p. 241). However, this counterexample disappears if
�> 98%.

(iii) VaR does not satisfy the mathematical axiom of
subadditivity (Huber 1981, Artzner et al. 1999)9. However,
the subadditivity axiom is somewhat controversial: (1) The
subadditivity axiom is based on an intuition that “a merger
does not create extra risk” (Artzner et al. 1999, p. 209),
which may not be true, as can be seen from the merger of
Bank of America and Merrill Lynch in 2008. (2) Subad-
ditivity is related to the idea that diversification is benefi-
cial; however, diversification may not always be beneficial.
(Fama and Miller 1972, pp. 271–272) show that diversifica-
tion is ineffective for asset returns with heavy tails (with tail
index less than 1); these results are extended in Ibragimov
and Walden (2007) and Ibragimov (2009). See Kou et al.
(2013, Section 6.1) for more discussion. (3) Although sub-
additivity ensures that �4X15+�4X25 is an upper bound for
�4X1 +X25, this upper bound may not be valid in the face
of model uncertainty.10 (4) In practice, �4X15+�4X25 may
not be a useful upper bound for �4X1 +X25 as the former
may be too much larger than the latter.11 (5) Subadditiv-
ity is not necessarily needed for capital allocation or asset
allocation.12 (6) It is often argued that if a nonsubadditive
risk measure is used in determining the regulatory capital
for a financial institution, then to reduce its regulatory cap-
ital, the institution has an incentive to legally break up into
various subsidiaries. However, breaking up an institution
into subsidiaries may not be bad, as it prevents the loss of
one single business unit from causing the bankruptcy of the
entire institution. On the contrary, if a subadditive risk mea-
sure is used, then that institution has an incentive to merge
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with other financial institutions, which may lead to finan-
cial institutions that are too big to fail. Hence, it is not
clear by using this type of argument alone whether a risk
measure should be subadditive or not.

Even if one believes in subadditivity, VaR (and median
shortfall) satisfies subadditivity in most relevant situations.
In fact, Daníelsson et al. (2013) show that VaR (and
median shortfall) is subadditive in the relevant tail region
if asset returns are regularly varying and possibly depen-
dent, although VaR does not satisfy global subadditivity.
Ibragimov and Walden (2007) and Ibragimov (2009) show
that VaR is subadditive for the infinite variance stable dis-
tributions with finite mean. “In this sense, they showed that
VaR is subadditive for the tails of all fat distributions, pro-
vided the tails are not super fat (e.g., Cauchy distribution)”
(Gaglianone et al. 2011, p. 150). Garcia et al. (2007, p. 483)
stress that “tail thickness required [for VaR] to violate sub-
additivity, even for small probabilities, remains an extreme
situation because it corresponds to such poor conditioning
information that expected loss appears to be infinite.”

(iv) Embrechts et al. (2015, p. 763) argue that “ES are
more robust than VaR according to the new notion of
robustness concerning the sensitivity of a risk measure to
the uncertainty of dependence in risk aggregation.” because
VaR is not aggregation robust but expected shortfall is.
However, their counterexample (i.e., their Example 2.2)
only shows that VaR may not be aggregation robust at the
level � such that F −14 · 5 is not continuous at �. There are
only at most a countable number of such �; in fact, if F

is a continuous distribution, then no such � exists. On the
contrary, for any other �, VaR at level � is aggregation
robust, because VaR at level � is Hampel robust and Ham-
pel robustness implies aggregation robustness;13 note that
by Corollary 3.7 of Cont et al. (2010) expected shortfall is
not Hampel robust.

(v) Expected shortfall is more conservative than VaR
because ES� > VaR�. This argument is misleading because
ES at level � should be compared with VaR at level
41 + �5/2 (i.e., MS at level �). ES� may be smaller (i.e.,
less conservative) than MS�, as mean may be smaller
than median. For example, if the tail loss distribution is a
Weibull distribution with a shape parameter lager than 3.44,
then ES� is smaller than MS� (see, e.g., Von Hippel 2005).

5.2. Other Comments

It is worth noting that it is not desirable for a risk measure
to be too sensitive to the tail risk. For example, let L denote
the loss that could occur to a person who walks on the
street. There is a very small but positive probability that the
person could be hit by a car and lose his life; in that unfor-
tunate case, L may be infinite. Hence, the ES of L may be
equal to infinity, suggesting that the person should never
walk on the street, which is apparently not reasonable. In
contrast, the MS of L is a finite number.

Theorems 1 and 3 generalize the main result in Ziegel
(2014), which shows the only elicitable spectral risk mea-
sure is the mean functional; note that VaR is not a spectral
risk measure. Weber (2006) derives a characterization the-
orem (Theorem 3.1) for risk measures with convex accep-
tance set N and convex rejection set Nc under two topo-
logical conditions on N: (1) there exists x ∈� with �x ∈N
such that for y ∈ � and �y ∈ Nc, 41 − �5�x + ��y ∈ N
for sufficiently small �> 0; (2) N is �-weakly closed for
some gauge function �2 � → 611�5. That characteriza-
tion theorem cannot be applied in this paper because we
do not make any assumption on the forecasting objective
function S4·1 ·5 in the definition of general elicitability and
hence the topological conditions may not hold. For exam-
ple, the results in Bellini and Bignozzi (2015), which rely
on the characterization theorem in Weber (2006), make
strong assumptions on the forecasting objective function
S4·1 ·5,14 requiring a more restrictive definition of elicitabil-
ity than Gneiting (2011). The elicitability of a risk measure
is also related to the statistical theory for the evaluation of
probability forecasts (Lai et al. 2011).

The axioms in this paper are based on economic consid-
erations. Other axioms based on mathematical considera-
tions include convexity (Föllmer and Schied 2002, Frittelli
and Gianin 2002, 2005), comonotonic subadditivity (Song
and Yan 2006, 2009; Kou et al. 2006, 2013), and comono-
tonic convexity (Song and Yan 2006, 2009).
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Endnotes

1. The axioms used in Wang et al. (1997), including a comono-
tonic additivity axiom, imply Axioms A1–A5. More precisely,
let � and �+ denote the set of rational numbers and positive
rational numbers, respectively. Without loss of generality, sup-
pose s = 1 in Axiom A3. (i) Their comonotonic additivity axiom
implies that �4�X5 = ��4X5 for any X and � ∈�+, which in
combination with their standardization axiom �415= 1 implies
�4�5 = ��415= �, � ∈�+. Since �4−�5 + �4�5 = �405= 0, it
follows that �4�5= �, ∀� ∈�. Then for any � ∈ �, there exists
8xn9⊂� and 8yn9⊂� such that xn ↓ � and yn ↑ �. By the mono-
tonic axiom, xn = �4xn5 ¾ �4�5 ¾ �4yn5 = yn. Letting n → �

yields �4�5 = �, ∀� ∈�; hence, Axiom A3 holds. (ii) By the
monotonic axiom, �4min4X1M55 ¶ �4min4max4X1−M51M55 ¶
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�4max4X1−M55. Letting M → � and using the conditions
�4min4X1M55→ �4X5 and �4max4X1−M55→ �4X5 as M → �

in their continuity axiom, without need of the condition
limd→0 �44X − d5+5 = �4X+5, Axiom A5 follows. (iii) We
then show positive homogeneity holds, i.e., �4�X5 = ��4X5 for
any X and any � > 0. For any X and M > 0, denote XM 2=
min4max4X1−M51M5. For any � > 0 and � > 0, there exist
8�n9 ⊂ �+ such that �n → � as n → � and �n�4X

M 5 − � =

�4�nX
M − �5¶ �4�XM 5¶ �4�nX

M + �5= �n�4X
M 5+ �. Letting

n→ � yields ��4XM 5−�¶ �4�XM 5¶ ��4XM 5+�, ∀ � > 0. Let-
ting � ↓ 0 leads to �4�XM 5 = ��4XM 5, ∀�¾ 0. Letting M → �

and applying Axiom A5 result in �4�X5= ��4X5, ∀�¾ 0. Their
comonotonic additivity axiom and positive homogeneity imply
Axiom A1.
2. For two random variables X and Y , if X first-order stochasti-
cally dominates Y , then P4X > x5 ¾ P4Y > x5 for all x, which
implies that for a risk measure � represented by (2), �4X5¾ �4Y 5.
3. The term “median shortfall” is also used in Moscadelli
(2004) and So and Wong (2012) but is, respectively, defined as
median6X �X > u7 for a constant u and median6X �X > VaR�4X57,
which are different from that defined in Kou et al. (2013). In fact,
the definition in the aforementioned second paper is the same as
the “tail conditional median” proposed in Kou et al. (2006).
4. Indeed, for � ∈ 40115, by definition,

MS�4X5 = inf8x �F�1X4x5¾ 1
2

}

= inf
{

x � 4FX4x5−�5/41 −�5¾ 1
2

}

= inf8x �FX4x5¾ 41 +�5/29= VaR41+�5/24X53

for � = 1, by definition, MS14X5 = F −1
X 415 = VaR14X5; for

� = 0, by definition, F01X = FX and hence MS04X5 = F −1
X 4 1

2 5 =

VaR1/24X5.
5. In fact, for any fixed u ∈ 40117, F −1

X 4u5= VaRu4X5 as a func-
tional on L�4ì1F1 P5 is a special case of the risk measure (2).
By the proof of Lemma 1, VaRu satisfies monotonicity, positive
homogeneity, and comonotonic additivity, which implies that �ã

satisfies Axioms A1–A4 for any ã. On L�4ì1F1 P5, �ã auto-
matically satisfies Axiom A5. On the other hand, for an � ∈ 40115,
the right quantile q+

� 4X5 2= inf8x �FX4x5 > �9 is a special case of
the risk measure defined in (2) with h4x5 being defined as h4x5 2=
18x¾1−�9, but it can be shown that q+

� cannot be represented by (5).
Indeed, suppose for the sake of contradiction that there exists a
ã such that q+

� 4X5 = �ã4X5, ∀X ∈ L�4ì1F1 P5. Let X0 have a
strictly positive density on its support. Then, F −1

X0
4u5 is continuous

and strictly increases on 40117. Let c > 0 be a constant. Define
X1 = X0 · 18X0¶F −1

X0
4�59 + 4X0 + c5 · 18X0>F −1

X0
4�59. It follows from

q+
� 4X15 − q+

� 4X05 = �ã4X15 − �ã4X05 that ã44�1175 = 1, which
in combination with the strict monotonicity of F −1

X0
4u5 implies

that �ã4X05=
∫

4�117 F
−1
X0

4u5ã4du5 > F −1
X0

4�5= q+
� 4X05. This con-

tradicts �ã4X05= q+
� 4X05.

6. We thank an anonymous referee for pointing this out to us.
7. Gilboa and Schmeidler (1989) consider infP∈P

∫

u4X5dP
without hi; see also Xia (2013).
8. The Basel II, Basel 2.5, and newly proposed risk measure
(Basel 3.5) for the trading book are also special cases of the class
of risk measures called natural risk statistics proposed by Kou
et al. (2013). The natural risk statistics are axiomatized by a dif-
ferent set of axioms including a comonotonic subadditivity axiom.
9. The representation theorem in Artzner et al. (1999) is based
on Huber (1981), who use the same set of axioms. Gilboa and

Schmeidler (1989) obtains a more general representation based on
a different set of axioms.
10. In fact, suppose we are concerned with obtaining an upper
bound for ES�4X1 +X25. In practice, because of model uncertainty,
we can only compute ̂ES�4X15 and ̂ES�4X25, which are estimates
of ES�4X15 and ES�4X25, respectively. ̂ES�4X15+̂ES�4X25 cannot
be used as an upper bound for ES�4X1 +X25 because it is possible
that ̂ES�4X15+̂ES�4X25 < ES�4X15+ ES�4X25.
11. For example, let X1 be the loss of a long position of a call
option on a stock (whose price is $100) at strike $100 and let X2

be the loss of a short position of a call option on that stock at
strike $95. Then the margin requirement for X1 +X2, �4X1 +X25,
should not be larger than $5, as X1 +X2 ¶ 5. However, �4X15= 0
and �4X25≈ 20 (the margin is around 20% of the underlying stock
price). In this case, no one would use the subadditivity to charge
the upper bound �4X15+ �4X25 ≈ 20 as the margin for the port-
folio X1 +X2; instead, people will directly compute �4X1 +X25.
12. Kou et al. (2013, Section 7) derive the Euler capital allocation
rule for a class of risk measures including VaR with scenario
analysis and the Basel Accord risk measures. See Shi and Werker
(2012), Peng et al. (2013), Xi et al. (2014), and the references
therein for asset allocation methods using VaR and Basel Accord
risk measures.
13. Aggregation robustness is a notion of robustness that is
weaker than Hampel robustness. By Huber and Ronchetti (2009,
Theorem 2.21), a risk measure (statistical functional) � is Hampel-
robust at a distribution F is essentially equivalent to that � is
weakly continuous at F . More precisely, if � is Hampel robust
at F , then for any � > 0, there exists � > 0 such that for ∀G ∈

N�4F 5 2= 8H �d4F 1H5 < �9, it holds that ��4F 5− �4G5� < �. In
contrast, � is aggregation robust at F means that for any � > 0,
there exists �> 0 such that for ∀G ∈ N�4F 5 ∩AF , it holds that
��4F 5−�4G5�< �, where AF 2= 8H � there exist integer m> 0 and
random variables X11 0 0 0 1Xm1X

′
11 0 0 0 1X

′
m, such that Xi

d
∼ X ′

i1 i =
11 0 0 0 1m1

∑m
i=1 Xi

d
∼ F , and

∑m
i=1 X

′
i

d
∼ H09. Since N�4F 5∩AF  

N�4F 5, aggregation robustness is weaker than Hampel robustness.
14. These assumptions include three conditions in Definition 3.1
and two conditions in Theorem 4.2: (1) S4x1 y5 is continuous in y;
(2) for any x ∈ 6−�1 �7 with � > 0, S4x1 y5¶ �4y5 for some gauge
function �.
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